SpinalHDL Documentation

SpinalHDL contributors

Jul 20, 2021

CONTENTS

1 FAQ
1.1~ What is the overhead of SpinalHDL generated RTL compared to human written VHDL/Verilog? .
1.2 What if SpinalHDL becomes unsupported in the future?
1.3 Does SpinalHDL keep comments in generated VHDL/verilog?
1.4 Could SpinalHDL scale up to big projects? o o v it i e
1.5 How SpinalHDL came tobe i e e e
1.6 Why develop a new language when there is VHDL/Verilog/SystemVerilog?
1.7 How to use an unreleased version of SpinalHDL (but committed on git)?
2 Support
2.1 Communication channels e
2.2 Commercial SUppOrt o .. e e e e e e e e e e e e e
3 Users
3.1 Companies e e e e e e e e
3.2 RepoSItOries o o v i e e e e e e e e e e e e e e e e e

4 Getting Started

4.1
4.2
4.3
4.4
4.5
4.6

Getting Started e
Motivation e e e e e e e e e e e e e
Presentation e e e e e e e e
ScalaGuide e e e e e e e e e e
Help for VHDL people o . o e e e e e e
Cheatsheets e e e e e e e

5 Data types

5.1
52
53
54
5.5
5.6
5.7
5.8
5.9

Bool . . e
Bits . . L e e e e e e e
Ulnt/SInt e e e e e e e
SpinalEnumo e e e e
Bundle e e
Ve . . e e e e e e e e e
UFiX/SFiX . . o . o e e e e e e e e e e e e e e e e
Floating o e e e e
Introduction e e e e e e e e

6 Structuring

6.1
6.2
6.3
6.4
6.5
6.6

Component and hierarchy L e
ATEA . . . o e e e
Function e
Clockdomains e
Instantiate VHDL and VerilogIP L o
Preserving nameso e e e e e e e e

7 Semantic

— e

[\

10
10
10
20
30

33
33
36
40
48
51
54
56
60
62

65
65
68
69
70
78
&3

93

10

7.1
7.2
7.3

ASSIZNMENtS L e e e e e e e e e e e e e e e e
When/Switch/MUX e e e e e e e
Rules o e

Sequential logic

8.1
8.2

Registers e e e e e e e e e e
RAM/ROM e

Design errors

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15

Assignmentoverlap L. e e e e e e e e e
Clock crossing violation L e
Combinatorial loopo e e e
Hierarchy violation e
TIobundle
Latchdetected o e
Nodriveron e e
NullPointerException o e e e
Register defined as componentinput o
Scope violationo e e e e e e e
Spinal can’tclone class e e e e e e e e e
Unassigned re@ister v v it e e e e e e e e e e e e e e e e
Unreachable is statement L e e e e e
Width mismatch 0. e
Introduction L e e e

Other language features

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Utils . . . o e e e
ASSEITIONS « . . o v e e e e e e e e e e e e e e e
Report e e
Formal e
Analogandinout L L e e e e e e
VHDL and Verilog generation L e e e
Introduction e e e

11 Libraries

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

Utils . . o e e e e e
Stream e e e e e e e e e e e e e e e e e
Flow . . . e e
Fragment L e e e
State machine e e e e e e e e e e e
VexRiscv (RV32IM CPU) e e e e
Bus Slave Factory e e e e
Fiber framework e e e
Bus . . e e e e e e

T1.10 Com e e e e
TLIT IO . . e e
1112 Graphics o o o e e e e e e
1113 EDA . . o e e e e
T1.14 MISC . . . o e e e e e e e e e e e e e e
11.15 Introduction e e e e e e

12 Simulation

12.1
12.2
12.3
12.4
12.5
12.6
12.7

Setup and installation L L e e e e
Bootasimulation. e e e e e e
Accessing signals of the simulation L oL L Lo
Clockdomains e e e e e e e e e e e
Thread-full APT e e e
Thread-less APT e e e e
Sensitive APT e e e e e e

101
101
103

111
111
112
114
115
116
117
117
118
119
120
120
121
123
123
125

127
127
129
130
130
131
134
139

141
141
144
153
154
155
160
161
163
164
170
171
173
175
177
178

13

14

15

16

12.8 Simulation engine e e e e e e e e e e e e e e
129 EXamples o v o e e e e e e e e e e e e e e e e e
12.10 Introduction o e e e e e e e e e e e e e e e e e e

Examples

13.1 Simple ones oL e e e e e e e e e e e
13.2 Intermediates Ones L e e e e e e e e e e e e e e e e e
13.3 Advanced ones e e e e e e e e e e
13.4 Introduction e e e e e

Legacy
14.1 RISCV . . o o e e
[4.2 PINSEC .« . v v o o e e e e e e e e e e e e e e e e e

Developers area

15.1 Bus Slave Factory Implementation e e
15.2 How to HACK this documentation o v v i it e it ettt
153 TYPES « v v e o e e e e e e e e e e e e e e e

Welcome to SpinalHDL’s documentation!

16.1 Site purpose and SIIUCLUIE v v v v vt e e e e e e e e e e e e e e e e e
16.2 Whatis SpinalHDL 7. o e
16.3 Getting started L. L e e e e e e e e e e e
16,4 Links o o e e e e e

235
235
236

251
251
258
261

CHAPTER
ONE

FAQ

1.1 What is the overhead of SpinalHDL generated RTL compared
to human written VHDL/Verilog?

The overhead is null, SpinalHDL is not an HLS approach. Its goal is not to translate any arbitrary code into RTL,
but to provide a powerful language to describe RTL and raise the abstraction level.

1.2 What if SpinalHDL becomes unsupported in the future?

This question has two sides:

1. SpinalHDL generates VHDL/Verilog files, which means that SpinalHDL will be supported by all EDA tools
for many decades.

2. If there is a bug in SpinalHDL and there is no longer support to fix it, it’s not a deadly situation, because
the SpinalHDL compiler is fully open source. For simple issues, you may be able to fix the issue yourself in
few hours. Remember how much time it takes to EDA companies to fix issues or to add new features in their
closed tools.

1.3 Does SpinalHDL keep comments in generated VHDL/verilog?

No, it doesn’t. Generated files should be considered as a netlist. For example, when you compile C code, do you
care about your comments in the generated assembly code?

1.4 Could SpinalHDL scale up to big projects?

Yes, some experiments were done, and it appears that generating hundreds of 3KLUT CPUs with caches takes
around 12 seconds, which is a ridiculously short time compared to the time required to simulate or synthesize this
kind of design.

SpinalHDL Documentation

1.5 How SpinalHDL came to be

Between December 2014 and April 2016, it was as a personal hobby project. But since April 2016 one person is
working full time on it. Some people are also regularly contributing to the project.

1.6 Why develop a new language when there is
VHDL/Verilog/SystemVerilog?

This page is dedicated to this topic.

1.7 How to use an unreleased version of SpinalHDL (but committed
on git)?

For instance, if you want to try the dev branch, do the following in a dummy folder :

git clone https://github.com/SpinalHDL/SpinalHDL.git -b dev
cd SpinalHDL
sbt clean publishLocal

Then in your project, don’t forget to update the SpinalHDL version specified in the build.sbt file, see
https://github.com/SpinalHDL/Spinal TemplateSbt/blob/master/build.sbt#L10

To know which version you have to set, look in
https://github.com/SpinalHDL/SpinalHDL/blob/dev/project/ Version.scala#L7

2 Chapter 1. FAQ

https://github.com/SpinalHDL/SpinalTemplateSbt/blob/master/build.sbt#L10
https://github.com/SpinalHDL/SpinalHDL/blob/dev/project/Version.scala#L7

CHAPTER
TWO

SUPPORT

2.1 Communication channels

For bug reporting and feature requests, do not hesitate to create github issues:
https://github.com/Spinal HDL/SpinalHDL/issues

For questions about SpinalHDL syntax and live talks, a Gitter channel is available:
https://gitter.im/SpinalHDL/SpinalHDL

For questions, you can also use the forum StackOverflow with the tag SpinalHDL :
https://stackoverflow.com/

A Google group is also available. Feel free to post whatever subject you want related to SpinalHDL:
https://groups.google.com/forum/#!forum/spinalhdl-hardware-description-language

2.2 Commercial support

If you are interested in a presentation, a workshop, or consulting, do not hesitate to contact us by email:
spinalhdl @ gmail.com

https://github.com/SpinalHDL/SpinalHDL/issues
https://gitter.im/SpinalHDL/SpinalHDL
https://stackoverflow.com/
https://groups.google.com/forum/#!forum/spinalhdl-hardware-description-language
mailto:spinalhdl@gmail.com

SpinalHDL Documentation

4 Chapter 2. Support

CHAPTER
THREE

3.1 Companies

* QsPin, Belgium

3.2 Repositories

¢ J1Sc Stack CPU
¢ VexRiscv CPU and SoC

USERS

https://github.com/SteffenReith/J1Sc
https://github.com/SpinalHDL/VexRiscv

SpinalHDL Documentation

6 Chapter 3. Users

CHAPTER
FOUR

GETTING STARTED

4.1 Getting Started

SpinalHDL is a hardware description language written in Scala, a statically-typed functional language using the
Java virtual machine (JVM). In order to start programming with SpinalHDL, you must have a JVM as well as the
Scala compiler. In the next section, we will explain how to download those tools if you don’t have them already.

4.1.1 Requirements / Things to download to get started

Before you download the SpinalHDL tools, you need to install:
¢ A Java JDK, which can be downloaded from here for instance.
e A Scala 2.11.X distribution, which can be downloaded here (not required if you use SBT).
e The SBT build tool, which can be downloaded here.
Optionally:
* An IDE (which is not compulsory). We advise you to get IntelliJ with its Scala plugin.

¢ Git, which is a tool for version control.

4.1.2 How to start programming with SpinalHDL

Once you have downloaded all the requirements, there are two ways to get started with SpinalHDL programming.
1. The SBT way : If you already are familiar with the SBT build system and/or if you don’t need an IDE.

2. The IDE way : Get a project already set up for you in an IDE and start programming right away.

The SBT way

We have prepared a ready-to-go project for you on Github.
* Either clone or download the “getting started” repository.

* Open a terminal in the root of it and run sbt run. When you execute it for the first time, the process could
take some time as it will download all the dependencies required to run SpinalHDL.

Normally, this command must generate an output file MyTopLevel . vhd, which corresponds to the top level Spinal-
HDL code defined in src\main\scala\MyCode.scala, which corresponds to the most simple SpinalHDL ex-
ample

From a clean Debian distribution you can type the following commands into the shell. The commands will install
Java, Scala, SBT, download the base project, and generate the corresponding VHDL file. Don’t worry if it takes
some time the first time that you run it.

https://scala-lang.org/
https://www.oracle.com/au/java/technologies/javase-downloads.html
https://scala-lang.org/download/
https://www.scala-sbt.org/download.html
https://www.jetbrains.com/idea/
https://git-scm.com/
https://codeload.github.com/SpinalHDL/SpinalTemplateSbt/zip/master
https://github.com/SpinalHDL/SpinalTemplateSbt

SpinalHDL Documentation

sudo apt-get install openjdk-8-jdk

sudo apt-get install scala

echo "deb https://repo.scala-sbt.org/scalasbt/debian all main" | sudo tee /etc/apt/
—,sources.list.d/sbt.list

echo "deb https://repo.scala-sbt.org/scalasbt/debian /" | sudo tee /etc/apt/sources.
—list.d/sbt_old.list

curl -sL "https://keyserver.ubuntu.com/pks/lookup?op=get&
—»search=0x2EEOEA64E40A89B84B2DF73499E82A75642AC823" | sudo apt-key add

sudo apt-get update

sudo apt-get install sbt

git clone https://github.com/SpinalHDL/SpinalTemplateSbt.git SpinalTemplateSbt

cd SpinalTemplateSbt

sbt run # select "mylib.MyTopLevelVhdl" in the menu

1s MyTopLevel.vhd

SBT in a environnement isolated from internet

Normally, SBT uses online repositories to download and cache your projects dependencies, this cache is located in
your home/ . ivy2 folder. The way to set up an internet-free environnement is to copy this cache from an internet-
full environnement where the cache was already filled once, and copy it over to your internet-less environnement.

You can get a portable SBT setup here:
https://www.scala-sbt.org/download.html

The IDE way, with Intellid IDEA and its Scala plugin

In addition to the aforementioned requirements , you also need to download the IntelliJ IDEA (the free Community
edition is enough). When you have installed IntelliJ, also check that you have enabled its Scala plugin (install
information can be found here).

And do the following :
* Either clone or download the “getting started” repository.

* In Intellij IDEA, “import project” with the root of this repository, the choose the Import project from external
model SBT and be sure to check all boxes.

* In addition, you might need to specify some path like where you installed the JDK to IntelliJ.

¢ Inthe project (Intellij project GUI), right click on src/main/scala/mylib/MyTopLevel. scala and select
“Run MyTopLevel”.

This should generate the output file MyTopLevel.vhd in the project directory, which implements a simple 8-bit
counter.

4.1.3 A very simple SpinalHDL example

The following code generates an and gate between two one-bit inputs.

import spinal.core._
class AND_Gate extends Component {

/:’: E3

* This is the component definition that corresponds to

(continues on next page)

8 Chapter 4. Getting Started

https://www.scala-sbt.org/download.html
https://www.jetbrains.com/help/idea/2016.1/enabling-and-disabling-plugins.html?origin=old_help
https://www.jetbrains.com/help/idea/2016.1/enabling-and-disabling-plugins.html?origin=old_help
https://codeload.github.com/SpinalHDL/SpinalTemplateSbt/zip/master
https://github.com/SpinalHDL/SpinalTemplateSbt

SpinalHDL Documentation

(continued from previous page)

* the VHDL entity of the component

*/
val io = new Bundle {
val a = in Bool()
val b = in Bool()
val ¢ = out Bool()
}
// Here we define some asynchronous logic
io.c := io.a & io.b
}

object AND_Gate {
// Let's go
def main(args: Array[String]) {
SpinalVhdl (new AND_Gate)
}
}

As you can see, the first line you have to write in SpinalHDL is import spinal.core._ which indicates that we
are using the Spinal components in the file.

Generated code

Once you have successfully compiled your code, the compiler should have emitted the following VHDL code:

package pkg_enum is
en&.ﬁkg_enum;

package pkg_scala2hdl is
en&..pkg_scalaZhdl;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library work;

use work.pkg_scala2hdl.all;
use work.all;

use work.pkg_enum.all;

entity AND_Gate is
port(
io_a : in std_logic;
io_b : in std_logic;
io_c : out std_logic
DK
end AND_Gate;

architecture arch of AND_Gate is

begin

(continues on next page)

4.1. Getting Started 9

SpinalHDL Documentation

(continued from previous page)

io_c <= (io_a and io_b);
end arch;

4.1.4 What to do next?

It’s up to you, but why not have a look at what the rypes are in SpinalHDL or discover what primitives the language
provides to describe hardware components? You could also have a look at our examples to see some samples of
what you could do next.

4.2 Motivation

Redirection to https://github.com/SpinalHDL/SpinalDoc/blob/master/presentation/en/workshop/taste.pdf

4.3 Presentation

Redirection to https://github.com/SpinalHDL/SpinalDoc/blob/master/presentation/en/presentation.pdf

4.4 Scala Guide

Important: Variables and functions should be defined into object, class, function. You can’t define them
on the root of a Scala file.

4.4.1 Basics
Types

In Scala, there are 5 major types:

Type Literal Description

Boolean true, false

Int 3,0x32 32 bits integer

Float 3.14f 32 bits floating point

Double 3.14 64 bits floating point

String “Hello world” UTF-16 string
Variables

In Scala, you can define a variable by using the var keyword:

var number : Int = 0
number = 6

number += 4
println(number) // 10

Scala is able to infer the type automatically. You don’t need to specify it if the variable is assigned at declaration:

10 Chapter 4. Getting Started

https://github.com/SpinalHDL/SpinalDoc/blob/master/presentation/en/workshop/taste.pdf
https://github.com/SpinalHDL/SpinalDoc/blob/master/presentation/en/presentation.pdf

SpinalHDL Documentation

var number = 0 //The type of 'number' is inferred as an Int during compilation.

However, it’s not very common to use var in Scala. Instead, constant values defined by val are often used:

val two =2

val three = 3

val six = two * three
Functions

For example, if you want to define a function which returns true if the sum of its two arguments is bigger than
zero, you can do as follows:

def sumBiggerThanZero(a: Float, b: Float): Boolean = {
return (a + b) > 0

}

Then, to call this function, you can write:

sumBiggerThanZero(2.3f, 5.4f)

You can also specify arguments by name, which is useful if you have many arguments:

sumBiggerThanZero(
a = 2.3f,
b = 5.4f

Return

The return keyword is not necessary. In absence of it, Scala takes the last statement of your function as the
returned value.

def sumBiggerThanZero(a: Float, b: Float): Boolean = {
(@a+b) >0
}

Return type inferation

Scala is able to automatically infer the return type. You don’t need to specify it:

def sumBiggerThanZero(a: Float, b: Float) = {
(a+b) >0
}

4.4. Scala Guide 11

SpinalHDL Documentation

Curly braces

Scala functions don’t require curly braces if your function contains only one statement:

def sumBiggerThanZero(a: Float, b: Float) = (a + b) > 0

Function that returns nothing

If you want a function to return nothing, the return type should be set to Unit. It’s equivalent to the C/C++ void
type.

def printer(): Unit = {
println("1234")
println("5678")

3

Argument default values

You can specify a default value for each argument of a function:

def sumBiggerThanZero(a: Float, b: Float = 0.0f) = {
(a+b) >0
}

Apply

Functions named apply are special because you can call them without having to type their name:

class Array(Q) {
def apply(index: Int): Int = index + 3
}

val array = new Array()
val value = array(4) //array(4) is interpreted as array.apply(4) and will return 7

This concept is also applicable for Scala object (static)

object MajorityVote {
def apply(value: Int): Int = ...
}

val value = MajorityVote(4) // Will call MajorityVote.apply(4)

12 Chapter 4. Getting Started

SpinalHDL Documentation

Object
In Scala, there is no static keyword. In place of that, there is object. Everything defined inside an object
definition is static.

The following example defines a static function named pow2 which takes a floating point value as parameter and
returns a floating point value as well.

object MathUtils {
def pow2(value: Float): Float = value * value

}

Then you can call it by writing:

MathUtils.pow2(42.0f)

Entry point (main)

The entry point of a Scala program (the main function) should be defined inside an object as a function named
main.

object MyTopLevelMain{
def main(args: Array[String]) {
println("Hello world")
}
}

Class

The class syntax is very similar to Java. Imagine that you want to define a Color class which takes as construction
parameters three Float values (r,g,b) :

class Color(r: Float, g: Float, b: Float) {
def getGrayLevel(): Float = r * 0.3f + g * 0.4f + b * 0.4f
}

Then, to instantiate the class from the previous example and use its getGrayLevel function:

val blue = new Color(0®, 0, 1)
val grayLevelOfBlue = blue.getGrayLevel()

Be careful, if you want to access a construction parameter of the class from the outside, this construction parameter
should be defined as a val:

class Color(val r: Float, val g: Float, val b: Float) { ... }

val blue = new Color(0®, 0, 1)
val redLevelOfBlue = blue.r

4.4. Scala Guide 13

SpinalHDL Documentation

Inheritance

As an example, suppose that you want to define two classes, Rectangle and Square, which extend the class
Shape:

class Shape {
def getArea(): Float
}

class Square(sideLength: Float) extends Shape {
override def getArea() = sidelLength * sidelLength
}

class Rectangle(width: Float, height: Float) extends Shape {
override def getArea() = width * height
}

Case class

Case class is an alternative way of declaring classes.

case class Rectangle(width: Float, height: Float) extends Shape {
override def getArea() = width * height
}

Then there are some differences between case class and class:
* case classes don’t need the new keyword to be instantiated.
e construction parameters are accessible from outside; you don’t need to define them as val.

In SpinalHDL, this explains the reasoning behind the coding conventions: it’s in general recommended to use case
class instead of class in order to have less typing and more coherency.

Templates / Type parameterization

Imagine you want to design a class which is a queue of a given datatype, in that case you need to provide a type
parameter to the class:

class Queue[T]O{
def push(that: T) : Unit = ...
def pop(: T = ...

}

If you want to restrict the T type to be a sub class of a given type (for example Shape), you can use the <: Shape
syntax :

class Shape() {
def getArea(): Float

}
class Rectangle() extends Shape { ... }

class Queue[T <: Shape]() {
def push(that: T): Unit = ...
def pop(O: T = ...

}

The same is possible for functions:

14 Chapter 4. Getting Started

SpinalHDL Documentation

def doSomething[T <: Shape](shape: T): Something = { shape.getArea() }

4.4.2 Coding conventions

Introduction

The coding conventions used in SpinalHDL are the same as the ones documented in the Scala Style Guide.
Some additional practical details and cases are explained in next pages.

class vs case class

When you define a Bundle or a Component, it is preferable to declare it as a case class.
The reasons are:
* It avoids the use of new keywords. Never having to use it is better than sometimes, under some conditions.

* A case class provides a clone function. This is useful in SpinalHDL when there is a need to clone a
Bundle, for example, when you define a new Reg or a new Stream of some kind.

* Construction parameters are directly visible from outside.

[case] class

All classes names should start with a uppercase letter

class Fifo extends Component {

}

class Counter extends Area {

}

case class Color extends Bundle {

¥

companion object

A companion object should start with an uppercase letter.

object Fifo {
def apply(that: Stream[Bits]): Stream[Bits] = {...}
}

object MajorityVote {
def apply(that: Bits): UInt = {...}
}

An exception to this rule is when the companion object is used as a function (only apply inside), and these apply
functions don’t generate hardware:

4.4. Scala Guide 15

https://docs.scala-lang.org/style/
https://docs.scala-lang.org/overviews/scala-book/companion-objects.html

SpinalHDL Documentation

object log2 {
def apply(value: Int): Int = {...}
}

function

A function should always start with a lowercase letter:

def sinTable = (0 until sampleCount).map(sampleIndex => {
val sinValue = Math.sin(2 * Math.PI * sampleIndex / sampleCount)
S((sinValue * ((1 << resolutionWidth) / 2 - 1)).toInt, resolutionWidth bits)
D)

val rom = Mem(SInt(resolutionWidth bit), initialContent = sinTable)

instances

Instances of classes should always start with a lowercase letter:

val fifo new Fifo(Q)
val buffer = Reg(Bits(8 bits))

if / when

Scala if and SpinalHDL when should normally be written in the following way:

if(cond) {

} éi;e if(cond) {
} else {

} e

when(cond) {
}.éi;eWhen(cond) {
}.ééﬁerwise {

¥

Exceptions could be:
e It’s fine to omit the dot before otherwise.

* It’s fine to compress an if/when statement onto a single line if it makes the code more readable.

16 Chapter 4. Getting Started

SpinalHDL Documentation

switch

SpinalHDL switch should normally be written in the following way:

switch(value) {
is(key) {

}
is(key) {

}
default {

3
}

It’s fine to compress an is/default statement onto a single line if it makes the code more readable.

Parameters

Grouping parameters of a Component/Bundle inside a case class is generally welcome because:
* Easier to carry/manipulate to configure the design

* Better maintainability

case class RgbConfig(rWidth: Int, gWidth: Int, bWidth: Int) {
def getWidth = rWidth + gWidth + bWidth
}

case class Rgb(c: RgbConfig) extends Bundle {
val r = UInt(c.rWidth bit)
val g = UInt(c.gWidth bit)
val b = UInt(c.bWidth bit)

}

But this should not be applied in all cases. For example: in a FIFO, it doesn’t make sense to group the dataType
parameter with the depth parameter of the fifo because, in general, the dataType is something related to the
design, while the depth is something related to the configuration of the design.

class Fifo[T <: Data](dataType: T, depth: Int) extends Component {

¥

4.4.3 Interaction

Introduction
SpinalHDL is, in fact, not an language: it’s a regular Scala library. This could seem strange at first glance, but it is
a very powerful combination.

You can use the whole Scala world to help you in the description of your hardware via the SpinalHDL library, but
to do that properly, it’s important to understand how SpinalHDL interacts with Scala.

4.4. Scala Guide 17

SpinalHDL Documentation

How SpinalHDL works behind the API
When you execute your SpinalHDL hardware description, each time you use SpinalHDL functions, operators, or
classes, it will build an in-memory graph that represents the netlist of your design.

Then, when the elaboration is done (instantiation of your top-level Component classes), SpinalHDL will do some
passes on the graph that was constructed, and if everything is fine, it will flush that graph into a VHDL or Verilog
file.

Everything is a reference

For example, if you define a Scala function which takes a parameter of type Bits, when you call it, it will be passed
as a reference. As consequence of that, if you assign that argument inside the function, it has the same effect on
the underlying Bits object as if you had assigned to it outside the function.

Hardware types

Hardware data types in SpinalHDL are the combination of two things:
* An instance of a given Scala type
¢ The configuration of that instance

For example Bits(8 bits) is the combination of the Scala type Bits and its 8 bits configuration (as a con-
struction parameter).

RGB example

Let’s take an Rgb bundle class as example:

case class Rgb(rWidth: Int, gWidth: Int, bWidth: Int) extends Bundle {
val r = UInt(rWidth bits)
val g = UInt(gWidth bits)
val b = UInt(bWidth bits)

}

The hardware data type here is the combination of the Scala Rgb class and its rWidth, gWidth, and bWidth
parameterization.

Here is an example of usage:

// Define an Rgb signal
val myRgbSignal = Rgb(5, 6, 5)

// Define another Rgb signal of the same data type as the preceding one
val myRgbCloned = cloneOf(myRgbSignal)

You can also use functions to define various kinds of type factories (typedef):

// Define a type factory function
def myRgbTypeDef = Rgb(5, 6, 5)

// Use that type factory to create an Rgb signal
val myRgbFromTypeDef = myRgbTypeDef

18 Chapter 4. Getting Started

SpinalHDL Documentation

Names of signals in the generated RTL

To name signals in the generated RTL, SpinalHDL uses Java reflections to walk through your entire component
hierarchy, collecting all references stored inside the class attributes, and naming them with their attribute name.

This is why the names of every signal defined inside a function are lost:

def myFunction(arg: UInt) {
val temp = arg + 1 // You will not retrieve the “temp’ signal in the generated RTL
return temp

}

val value = myFunction(U"000001") + 42

One solution if you want preserve the names of the internal variables in the generated RTL, is to use Area:

def myFunction(arg: UInt) new Area {
val temp = arg + 1 // You will not retrieve the temp signal in the generated RTL

¥

val myFunctionCall = myFunction(U"000001") // Will generate ‘temp" with,
< myFunctionCall_temp® as the name
val value = myFunctionCall.temp + 42

Scala is for elaboration, SpinalHDL for hardware description

For example, if you write a Scala for loop to generate some hardware, it will generate the unrolled result in
VHDL/Verilog.

Also, if you want a constant, you should not use SpinalHDL hardware literals but the Scala ones. For example:

// This is wrong, because you can't use a hardware Bool as construction parameter..
(It will cause hierarchy violations.)
class SubComponent(activeHigh: Bool) extends Component {
Y/
3

// This is right, you can use all the Scala world to parameterize your hardware.
class SubComponent(activeHigh: Boolean) extends Component {

/) ..
3

Scala elaboration capabilities (if, for, functional programming)

All of Scala’s syntax can be used to elaborate hardware designs, for instance, a Scala 1f statement could be used
to enable or disable the generation of hardware:

val counter = Reg(UInt(8 bits))

counter := counter + 1
if(generateAClearWhenHit42) { // Elaboration test, like an if generate in vhdl
when(counter === 42) { // Hardware test
counter := 0
}
}

The same is true for Scala for loops:

4.4. Scala Guide 19

SpinalHDL Documentation

val value = Reg(Bits(8 bits))
when(something) {

// Set all bits of value by using a Scala for loop (evaluated during hardware.
—elaboration)

for(idx <- 0 to 7) {

value(idx) := True

}

}

Also, functional programming techniques can be used with many SpinalHDL types:

val values = Vec(Bits(8 bits), 4)

val valuesAre4?2 = values.map(_ === 42)
val valuesAreAll42 = valuesAre42.reduce(_ && _)

val valuesAreEqualToTheirIndex = values.zipWithIndex.map{ case (value, i) => value,
y=== 1 }

4.4.4 Scala guide

Introduction
Scala is a very capable programming language that was influenced by a unique set of languages, but often, this set

of languages doesn’t cross the ones that most programmers use. That can hinder newcomers’ understanding of the
concepts and design choices behind Scala.

The following pages will present Scala, and try to provide enough information about it for newcomers to be com-
fortable with SpinalHDL.

4.5 Help for VHDL people

4.5.1 VHDL comparison

Introduction

This page will show the main differences between VHDL and SpinalHDL. Things will not be explained in depth.

Process

Processes are often needed when you write RTL, however, their semantics can be clunky to work with. Due to how
they work in VHDL, they can force you to split your code and duplicate things.

To produce the following RTL:

L +
myRegister myRegisterWithReset
False 5 A F
mySignal D Q—7
True cond = cond =E 4
clk = clk =P
cond CLR

20 Chapter 4. Getting Started

SpinalHDL Documentation

You will have to write the following VHDL.:

signal mySignal : std_logic;
signal myRegister : std_logic_vector(3 downto 0);
signal myRegisterWithReset : std_logic_vector(3 downto 0);
begin

process(cond)
begin

mySignal <= '0';

if cond = '1' then

mySignal <= '1';

end if;

end process;

process(clk)
begin
if rising_edge(clk) then
if cond = '1' then
myRegister <= myRegister + 1;
end if;
end if;
end process;

process(clk,reset)
begin
if reset = '1' then
myRegisterWithReset <= (others => '0');
elsif rising_edge(clk) then
if cond = '1' then
myRegisterWithReset <= myRegisterWithReset + 1;
end if;
end if;
end process;

While in SpinalHDL, it’s:

val mySignal = Bool()
val myRegister = Reg(UInt(4 bits))
val myRegisterWithReset = Reg(UInt(4 bits)) init(0)

mySignal := False
when(cond) {
mySignal := True
myRegister := myRegister + 1
myRegisterWithReset := myRegisterWithReset + 1
3

4.5. Help for VHDL people 21

SpinalHDL Documentation

Implicit vs explicit definitions
In VHDL, when you declare a signal, you don’t specify if it is a combinatorial signal or a register. Where and how
you assign to it decides whether it is combinatorial or registered.

In SpinalHDL these kinds of things are explicit. Registers are defined as registers directly in their declaration.

Clock domains

In VHDL, every time you want to define a bunch of registers, you need the carry the clock and the reset wire to
them. In addition, you have to hardcode everywhere how those clock and reset signals should be used (clock edge,
reset polarity, reset nature (async, sync)).

In SpinalHDL you can define a ClockDomain, and then define the area of your hardware that uses it.

For example:

val coreClockDomain = ClockDomain(
clock = io.coreClk,
reset = io.coreReset,
config = ClockDomainConfig(
clockEdge = RISING,
resetKind = ASYNC,
resetActivelevel = HIGH
)
)
val coreArea = new ClockingArea(coreClockDomain) {
val myCoreClockedRegister = Reg(UInt(4 bit))
/) ..
// coreClockDomain will also be applied to all sub components instantiated in the.
—Area
/)
}

Component’s internal organization

In VHDL, there is a block feature that allows you to define sub-areas of logic inside your component. However,
almost no one uses this feature, because most people don’t know about them, and also because all signals defined
inside these regions are not readable from the outside.

In SpinalHDL you have an Area feature that does this concept much more nicely:

val timeout = new Area {
val counter = Reg(UInt(8 bits)) init(0)
val overflow = False
when(counter =/= 100) {

counter := counter + 1
} otherwise {
overflow := True

}
}

val core = new Area {
when(timeout.overflow) {
timeout.counter := 0
}
}

22 Chapter 4. Getting Started

SpinalHDL Documentation

Variables and signals defined inside of an Area are accessible elsewhere in the component, including in other Area
regions.

Safety
In VHDL as in SpinalHDL, it’s easy to write combinatorial loops, or to infer a latch by forgetting to drive a signal
in the path of a process.

Then, to detect those issues, you can use some lint tools that will analyze your VHDL, but those tools aren’t
free. In SpinalHDL the 1int process in integrated inside the compiler, and it won’t generate the RTL code until
everything is fine. It also checks clock domain crossing.

Functions and procedures

Functions and procedures are not used very often in VHDL, probably because they are very limited:

* You can only define a chunk of combinational hardware, or only a chunk of registers (if you call the func-
tion/procedure inside a clocked process).

* You can’t define a process inside them.

* You can’t instantiate a component inside them.

* The scope of what you can read/write inside them is limited.
In SpinalHDL, all those limitations are removed.

An example that mixes combinational logic and a register in a single function:

def simpleAluPipeline(op: Bits, a: UInt, b: UInt): UInt = {
val result = UInt(8 bits)

switch(op) {

is(®){ result := a + b }
is(1){ result :=a - b }
is(2){ result := a b}

}

return RegNext(result)

¥

An example with the queue function inside the Stream Bundle (handshake). This function instantiates a FIFO
component:

class Stream[T <: Data](dataType: T) extends Bundle with IMasterSlave with.
—DataCarrier[T] {

val valid = Bool()

val ready = Bool()

val payload = cloneOf(dataType)

def queue(size: Int): Stream[T] = {
val fifo = new StreamFifo(dataType, size)
fifo.io.push <> this
fifo.io.pop
}
}

An example where a function assigns a signal defined outside of itself:

4.5. Help for VHDL people 23

SpinalHDL Documentation

val counter = Reg(UInt(8 bits)) init(0)
counter := counter + 1

def clear() : Unit = {
counter := 0

}

when(counter > 42) {
clear()

}

Buses and Interfaces

VHDL is very boring when it comes to buses and interfaces. You have two options:

1) Define buses and interfaces wire-by-wire, each time and everywhere:

PADDR : in unsigned(addressWidth-1 downto 0);

PSEL : in std_logic

PENABLE : in std_logic;

PREADY : out std_logic;

PWRITE : in std_logic;

PWDATA : in std_logic_vector(dataWidth-1 downto 0);
PRDATA : out std_logic_vector(dataWidth-1 downto 0);

2) Use records but lose parameterization (statically fixed in the package), and you have to define one for each
directions:

P_m : in APB_MNM;
P_s : out APB_S;

SpinalHDL has very strong support for bus and interface declarations with limitless parameterizations:

val P = slave(Apb3(addressWidth, dataWidth))

You can also use object oriented programming to define configuration objects:

val coreConfig = CoreConfig(
pcWidth = 32,
addrWidth = 32,
startAddress = 0x00000000,
regFileReadyKind = sync,
branchPrediction = dynamic,
bypassExecute® = true,
bypassExecutel = true,
bypassWriteBack = true,
bypassWriteBackBuffer = true,
collapseBubble = false,
fastFetchCmdPcCalculation = true,
dynamicBranchPredictorCacheSizelog2 = 7

)

// The CPU has a system of plugins which allows adding new features into the core.
// Those extensions are not directly implemented in the core, but are kind of an.
—additive logic patch defined in a separate area.

coreConfig.add(new MulExtension)

coreConfig.add(new DivExtension)

(continues on next page)

24 Chapter 4. Getting Started

SpinalHDL Documentation

(continued from previous page)

coreConfig.add(new BarrelShifterFullExtension)

val iCacheConfig = InstructionCacheConfig(
cacheSize = 4096,
bytePerLine = 32,
wayCount = 1, // Can only be one for the moment
wrappedMemAccess = true,
addressWidth = 32,
cpuDataWidth 32,
memDataWidth = 32

)

new RiscvCoreAxi4(
coreConfig = coreConfig,
iCacheConfig = iCacheConfig,
dCacheConfig = null,
debug = debug,
interruptCount = interruptCount

)

Signal declaration

VHDL forces you to define all signals at the top of your architecture description, which is annoying.

(many signal declarations)
éignal a : std_logic;
(many signal declarations)
beéin
(many logic definitions)
é.<: x&y

(many logic definitions)

SpinalHDL is flexible when it comes to signal declarations.

val a = Bool
a:=x&y

It also allows you to define and assign signals in a single line.

val a = x &y

4.5. Help for VHDL people

25

SpinalHDL Documentation

Component instantiation

VHDL is very verbose about this, as you have to redefine all signals of your sub-component entity, and then bind
them one-by-one when you instantiate your component.

divider_cmd_valid : in std_logic;
divider_cmd_ready : out std_logic;
divider_cmd_numerator : in unsigned(31 downto 0);
divider_cmd_denominator : in unsigned(31 downto 0);
divider_rsp_valid : out std_logic;
divider_rsp_ready : in std_logic;
divider_rsp_quotient : out unsigned(31 downto 0);
divider_rsp_remainder : out unsigned(31 downto 0);

divider : entity work.UnsignedDivider

port map (
clk => clk,
reset => reset,
cmd_valid => divider_cmd_valid,
cmd_ready => divider_cmd_ready,
cmd_numerator => divider_cmd_numerator,
cmd_denominator => divider_cmd_denominator,
rsp_valid => divider_rsp_valid,
rsp_ready => divider_rsp_ready,
rsp_quotient => divider_rsp_quotient,
rsp_remainder => divider_rsp_remainder
s

SpinalHDL removes that, and allows you to access the IO of sub-components in an object-oriented way.

val divider = new UnsignedDivider()

// And then if you want to access I0 signals of that divider:
divider.io.cmd.valid := True
divider.io.cmd.numerator := 42

Casting

There are two annoying casting methods in VHDL.:

* boolean <> std_logic (ex: To assign a signal using a condition such asmySignal <= myValue < 10 isnot
legal)

* unsigned <> integer (ex: To access an array)
SpinalHDL removes these casts by unifying things.

boolean/std_logic:

val value = UInt(8 bits)
val valueBiggerThanTwo = Bool
valueBiggerThanTwo := value > 2 // value > 2 return a Bool

unsigned/integer:

val array = Vec(UInt(4 bits),8)
val sel = UInt(3 bits)
val arraySel = array(sel) // Arrays are indexed directly by using Ulnt

26 Chapter 4. Getting Started

SpinalHDL Documentation

Resizing

The fact that VHDL is strict about bit size is probably a good thing.

my8BitsSignal <= resize(my4BitsSignal, 8);

In SpinalHDL you have two ways to do the same:

// The traditional way
my8BitsSignal := my4BitsSignal.resize(8)

// The smart way
my8BitsSignal := my4BitsSignal.resized

Parameterization

VHDL prior to the 2008 revision has many issues with generics. For example, you can’t parameterize records,
you can’t parameterize arrays in the entity, and you can’t have type parameters.

Then VHDL 2008 came and fixed those issues. But RTL tool support for VHDL 2008 is really weak depending
on the vendor.

SpinalHDL has full support for generics integrated natively in its compiler, and it doesn’t rely on VHDL generics.

Here is an example of parameterized data structures:

val colorStream = Stream(Color(5, 6, 5)))
val colorFifo = StreamFifo(Color(5, 6, 5), depth = 128)
colorFifo.io.push <> colorStream

Here is an example of a parameterized component:

class Arbiter[T <: Data](payloadType: T, portCount: Int) extends Component {
val io = new Bundle {
val sources = Vec(slave(Stream(payloadType)), portCount)
val sink = master(Stream(payloadType))
}
/) ...
}

Meta hardware description

VHDL has kind of a closed syntax. You can’t add abstraction layers on top of it.

SpinalHDL, because it’s built on top of Scala, is very flexible, and allows you to define new abstraction layers very
easily.

Some examples of this flexibility are the FSM library, the BusSlaveFactory library, and also the JTAG library.

4.5. Help for VHDL people 27

SpinalHDL Documentation

4.5.2 VHDL equivalences

Entity and architecture

In SpinalHDL, a VHDL entity and architecture are both defined inside a Component.

Here is an example of a component which has 3 inputs (a, b, c) and an output (result). This component also has
an offset construction parameter (like a VHDL generic).

case class MyComponent(offset: Int) extends Component {
val io = new Bundle{
val a, b, ¢ = in UInt(8 bits)
val result = out UInt(8 bits)
}
io.result := a + b + ¢ + offset

}

Then to instantiate that component, you don’t need to bind it:

case class TopLevel extends Component {

val mySubComponent = MyComponent(offset = 5)

mySubComponent.io.a := 1
mySubComponent.io.b := 2
mySubComponent.io.c := 3
7?77 := mySubComponent.io.result
3
Data types

SpinalHDL data types are similar to the VHDL ones:

VHDL SpinalHDL
std_logic Bool
std_logic_vector | Bits
unsigned Ulnt
signed Slnt

In VHDL, to define an 8 bit unsigned you have to give the range of bits unsigned(7 downto 0),
whereas in SpinalHDL you simply supply the number of bits UInt (8 bits).

VHDL | SpinalHDL
records | Bundle
array Vec

enum SpinalEnum

Here is an example of the SpinalHDL Bundle definition. channelWidth is a construction parameter, like VHDL
generics, but for data structures:

28 Chapter 4. Getting Started

SpinalHDL Documentation

case class RGB(channelWidth: Int) extends Bundle {
val r, g, b = UInt(channelWidth bits)

}

Then for example, to instantiate a Bundle, you need to write val myColor = RGB(channelWidth=8).

Signal

Here is an example about signal instantiations:

case class MyComponent(offset: Int) extends Component {

val io = new Bundle {

val a, b, ¢ = UInt(8 bits)
val result = UInt(8 bits)

}
val ab = UInt(8 bits)
ab :=a+b

val abc = ab + c
io.result := abc + offset

// You can define a signal directly with its value

Assignments

In SpinalHDL, the := assignment operator is equivalent to the VHDL signal assignment (<=):

val myUInt = UInt(8 bits)
myUInt := 6

Conditional assignments are done like in VHDL by using if/case statements:

val clear = Bool(Q)

val counter = Reg(UInt(8 bits))

when(clear) {
counter := 0
}.elsewhen(counter === 76) {
counter := 79
}.otherwise {
counter(7) := ! counter(7)

}

switch(counter) {
is(42) {

counter := 65

}
default {
counter := counter + 1

}

4.5. Help for VHDL people

29

SpinalHDL Documentation

Literals

Literals are a little bit different than in VHDL.:

val myBool = Bool()
myBool := False
myBool := True
myBool := Bool(4 > 7)

val myUInt = UInt(8 bits)

myUInt := "0001_1100"
myUInt := "XEE"
myUInt := 42

myUInt := U(54,8 bits)

myUInt := ((3 downto 0) -> myBool, default -> true)

when(myUInt === U(myUInt.range -> true)) {
myUInt(3) := False

}

Registers

In SpinalHDL, registers are explicitly specified while in VHDL registers are inferred. Here is an example of
SpinalHDL registers:

val counter = Reg(UInt(8 bits)) init(0)
counter := counter + 1 // Count up each cycle

// init(0) means that the register should be initialized to zero when a reset occurs

Process blocks

Process blocks are a simulation feature that is unnecessary to design RTL. It’s why SpinalHDL doesn’t contain any
feature analogous to process blocks, and you can assign what you want, where you want.

val cond = Bool()
val myCombinatorial = Bool()
val myRegister = UInt(8 bits)

myCombinatorial := False
when(cond) {
myCombinatorial := True

myRegister = myRegister + 1

}

4.6 Cheatsheets

4.6.1 Core

Redirection to https://github.com/SpinalHDL/SpinalDoc/blob/master/cheatsheet/cheatSheet_core_oo.pdf

30 Chapter 4. Getting Started

https://github.com/SpinalHDL/SpinalDoc/blob/master/cheatsheet/cheatSheet_core_oo.pdf

SpinalHDL Documentation

4.6.2 Lib

Redirection to https://github.com/SpinalHDL/SpinalDoc/blob/master/cheatsheet/cheatSheet_lib_oo.pdf

4.6.3 Symbolic

Redirection to https://github.com/SpinalHDL/SpinalDoc/blob/master/cheatsheet/cheatSheet_symbolic.pdf

4.6. Cheatsheets 31

https://github.com/SpinalHDL/SpinalDoc/blob/master/cheatsheet/cheatSheet_lib_oo.pdf
https://github.com/SpinalHDL/SpinalDoc/blob/master/cheatsheet/cheatSheet_symbolic.pdf

SpinalHDL Documentation

32 Chapter 4. Getting Started

CHAPTER
FIVE

DATA TYPES

5.1 Bool

5.1.1 Description

The Bool type corresponds to a boolean value (True or False).

5.1.2 Declaration

The syntax to declare a boolean value is as follows: (everything between [] is optional)
Syntax Description Return
Bool[()] Create a Bool Bool
True Create a Bool assigned with true Bool
False Create a Bool assigned with false Bool
Bool(value: Create a Bool assigned with a Scala Boolean(true, false) Bool
Boolean)

val myBool_1 = Bool() // Create a Bool

myBool_1 := False // := 1s the assignment operator

val myBool_2 = False // Equivalent to the code above

val myBool_3 = Bool(5 > 12) // Use a Scala Boolean to create a Bool

5.1.3 Operators

The following operators are available for the Bool type:

33

SpinalHDL Documentation

Logic

Operator Description Return type

Ix Logical NOT Bool
Logical AND Bool

x&&y

x&y
Logical OR Bool

x|y

x|y

xNy Logical XOR Bool

x.set[()] Set x to True

x.clear[()] Set x to False

x.setWhen(cond) Set x when cond is True Bool

x.clearWhen(cond) Clear x when cond is True Bool

x.riseWhen(cond) Set x when x is False and cond is | Bool
True

x.fallWhen(cond) Clear x when x is True and cond is | Bool
True

val a, b, ¢ = Bool()
val res = (la & b) * ¢

val d = False

when(cond) {
d.set()

}

val e = False

// equivalent to d

// ((NOT a) AND b) XOR c

:= True

e.setlthen(cond) // equivalent to when(cond) { d := True }

val £ = RegInit(False) fallWhen(ack) setWhen(req)

/** equivalent to

* when(f && ack) { f := False }

* when(req) { f := True }

* or

* f :=req || (f && !ack)

:':/

// mind the order of assignments!
val g = RegInit(False) setWhen(req) fallWhen(ack)

// equivalent to g

= ((lg) && req) || (g & & !ack)

34

Chapter 5. Data types

SpinalHDL Documentation

Edge detection

Operator Description Return
type
x.edge[()] Return True when x changes state Bool
x.edge(initAt: Bool) Same as x.edge but with a reset value Bool
x.rise[()] Return True when x was low at the last cycle and is now high Bool
x.rise(initAt: Bool) Same as x.rise but with a reset value Bool
x.fall[()] Return True when x was high at the last cycle and is now low Bool
x.fall(initAt: Bool) Same as x.fall but with a reset value Bool
x.edges[()] Return a bundle (rise, fall, toggle) BoolEdges
x.edges(initAt: Bool) Same as x.edges but with a reset value BoolEdges

when(myBool_1.rise(False)) {
// do something when a rising edge is detected

}

val edgeBundle = myBool_2.edges(False)
when(edgeBundle.rise) {
// do something when a rising edge is detected

3
when(edgeBundle. fall) {
// do something when a falling edge is detected

}
when(edgeBundle.toggle) {
// do something at each edge

}
Comparison
Operator | Description | Return type
X===y Equality Bool
X=/=y Inequality Bool
when(myBool) { // Equivalent to when(myBool === True)
// do something when myBool is True
}
when(!myBool) { // Equivalent to when(myBool === False)
// do something when myBool is False
}
5.1. Bool 35

SpinalHDL Documentation

Type cast
Operator Description Return
x.asBits Binary cast to Bits Bits(w(x) bits)
x.asUInt Binary cast to Ulnt Ulnt(w(x) bits)
x.asSInt Binary cast to Slnt SInt(w(x) bits)
x.asUInt(bitCount) | Binary cast to Ulnt and resize | Ulnt(bitCount bits)
x.asBits(bitCount) | Binary cast to Bits and resize | Bits(bitCount bits)

// Add the carry to an SInt value
val carry = Bool()
val res = mySInt + carry.asSInt

Misc

Operator | Description Return
X ##y Concatenate, x->high, y->low | Bits(w(x) + w(y) bits)

val a, b, ¢ = Bool

// Concatenation of three Bool into a Bits
val myBits = a ## b ## c

5.2 Bits

5.2.1 Description

The Bits type corresponds to a vector of bits that does not convey any arithmetic meaning.

5.2.2 Declaration

The syntax to declare a bit vector is as follows: (everything between [] is optional)

Syntax Description Return

Bits [()] Create a BitVector, bits count is inferred Bits

Bits(x bits) Create a BitVector with x bits Bits
Create a BitVector with x bits assigned with ‘value’ Bits

B(value: Int[, x bits])
B(value: Biglnt[, x bits])

B”[[size’ |base]value” Create a BitVector assigned with ‘value’ (Base: ‘h’, ‘d’, ‘0’, ‘b’) | Bits
B([x bits,] element, ...) Create a BitVector assigned with the value specified by elements | Bits

// Declaration

val myBits = Bits(Q) // the size is inferred

val myBitsl = Bits(32 bits)

val myBits2 B(25, 8 bits)

val myBits3 B"8'xFF" // Base could be x,h (base 16)

(continues on next page)

36 Chapter 5. Data types

SpinalHDL Documentation

(continued from previous page)

// d (base 10)
// o (base 8)
// b (base 2)

val myBits4 B"1001_0011" // _ can be used for readability

// Element

val myBits5 B(8 bits, default -> True) // "11111111"

val myBits6 = B(8 bits, (7 downto 5) -> B"101", 4 -> true, 3 -> True, default ->_
—false) // "10111000"

val myBits7 = Bits(8 bits)

myBits7 := (7 -> true, default -> false) // "10000000" (For assignment purposes, you.
—can omit the B)

5.2.3 Operators

The following operators are available for the Bits type:

Logic
Operator Description Return type
~X Bitwise NOT Bits(w(x) bits)
x&y Bitwise AND Bits(w(xy) bits)
x|y Bitwise OR Bits(w(xy) bits)
xNy Bitwise XOR Bits(w(xy) bits)
x.xorR XOR all bits of x Bool
x.0orR OR all bits of x Bool
x.andR AND all bits of x Bool
X>>y Logical shift right, y: Int Bits(w(x) - y bits)
X>>y Logical shift right, y: Ulnt Bits(w(x) bits)
X <<y Logical shift left, y: Int Bits(w(x) + y bits)
X <<y Logical shift left, y: Ulnt Bits(w(x) + max(y) bits)
X[>>y Logical shift right, y: Int/Ulnt Bits(w(x) bits)
X|<<y Logical shift left, y: Int/Ulnt Bits(w(x) bits)
x.rotateLeft(y) Logical left rotation, y: Ulnt/Int Bits(w(x) bits)
x.rotateRight(y) Logical right rotation, y: Ulnt/Int Bits(w(x) bits)
x.clearAll[()] Clear all bits
x.setAll[()] Set all bits
x.setAllTo(value: Boolean) Set all bits to the given Boolean value
x.setAllTo(value: Bool) Set all bits to the given Bool value

// Bitwise operator
val a, b, ¢ = Bits(32 bits)
c := ~(a & b) // Inverse(a AND b)

val all_1 = a.andR // Check that all bits are equal to 1
// Logical shift
val bits_10bits = bits_8bits << 2 // shift left (results in 10 bits)

val shift_8bits = bits_8bits |<< 2 // shift left (results in 8 bits)

// Logical rotation
val myBits = bits_8bits.rotatelLeft(3) // left bit rotation

(continues on next page)

5.2. Bits 37

SpinalHDL Documentation

(continued from previous page)

// Set/clear
val a = B"8"'x42"
when(cond) {

a.setAll() // set all bits to True when cond is True

3
Comparison
Operator | Description | Return type
X === Equality Bool
X=/=y Inequality Bool
when(myBits === 3) {
}
when(myBits_32 =/= B"32'x44332211") {
}
Type cast
Operator | Description Return
x.asBits Binary cast to Bits Bits(w(x) bits)
x.asUInt Binary cast to Ulnt Ulnt(w(x) bits)
x.asSInt Binary cast to SInt SInt(w(x) bits)
x.asBools | Cast to an array of Bools | Vec(Bool, w(x))
Bx: T) Cast Data to Bits Bits(w(x) bits)

To cast a Bool, UInt or an SInt into a Bits, you can use B(something):

// cast a Bits to SInt
val mySInt = myBits.asSInt

// create a Vector of bool
val myVec = myBits.asBools

// Cast a SInt to Bits
val myBits = B(mySInt)

Bit extraction

Operator Description Return

x(y) Readbit, y: Int/UlInt Bool
x(offset,width bits) Read bitfield, offset: Ulnt, width: Int Bits(width bits)
x(range) Read a range of bit. Ex : myBits(4 downto 2) Bits(range bits)
x(y) =2z Assign bits, y: Int/Ulnt Bool

x(offset, width bits) := | Assign bitfield, offset: Ulnt, width: Int Bits(width bits)
z

x(range) :=z Assign a range of bit. Ex : myBits(4 downto 2) := B”010” Bits(range bits)

38

Chapter 5. Data types

SpinalHDL Documentation

// get the element at the index 4

val myBool = myBits(4)

// assign
myBits(1l) := True
// Range

val myBits_8bits
val myBits_7bits
val myBits_6bits =

myBits_8bits(3 downto 0)

myBits_16bits(7 downto 0)
myBits_16bits(® to 6)
myBits_16Bits(® until 6)

;= myBits_4bits

Misc
Operator Description Return
x.getWidth Return bitcount Int
x.range Return the range (x.high downto 0) Range
x.high Return the upper bound of the type x Int
X.msb Return the most significant bit Bool
x.Isb Return the least significant bit Bool
X ##y Concatenate, x->high, y->low Bits(w(x) + w(y) bits)

x.subdivideln(y slices)

Subdivide x in y slices, y: Int

Vec(Bits, y)

x.subdivideln(y bits)

Subdivide x in multiple slices of y bits, y: Int

Vec(Bits, w(x)/y)

x.resize(y) Return a resized copy of x, if enlarged, it is filled with | Bits(y bits)
zero, y: Int

x.resized Return a version of x which is allowed to be automat- | Bits(w(x) bits)
ically resized were needed

x.resizeLeft(x) Resize by keeping MSB at the same place, x:Int Bits(x bits)

println(myBits_32bits.getWidth) // 32

myBool

// Concatenation

:= myBits.1sb // Equivalent to myBits(0)

myBits_24bits := bits_8bits_1 ## bits_8bits_2 ## bits_8bits_3

// Subdivide

val sel = UInt(2 bits)

val myBitsWord = myBits_128bits.subdivideIn(32 bits) (sel)
// sel = 0 => myBitsWord = myBits_128bits(127 downto 96)

// sel
// sel
// sel =

1 => myBitsWord = myBits_128bits(95 downto 64)
2 => myBitsWord = myBits_128bits(63 downto 32)
3 => myBitslWiord = myBits_128bits(31 downto 0)

// If you want to access in reverse order you can do:

val myVector

= myBits_128bits.subdivideIn(32 bits).reverse

val myBitsWord = myVector(sel)

// Resize

myBits_32bits := B"32'x112233344"

myBits_8bits
myBits_8bits

myBits_32bits.resized
myBits_32bits.resize(8)

// automatic resize (myBits_8bits = 0x44)
// resize to 8 bits (myBits_8bits = 0x44)

myBits_8bits := myBits_32bits.resizelLeft(8) // resize to 8 bits (myBits_8bits = 0x11)

5.2. Bits

39

SpinalHDL Documentation

5.3 UInt/Sint

5.3.1 Description

The UInt/SInt type corresponds to a vector of bits that can be used for signed/unsigned integer arithmetic.

5.3.2 Declaration

The syntax to declare an integer is as follows: (everything between [] is optional)

Syntax Description Return
Create an unsigned/signed integer, bits count is inferred
Ulnt[()] Ulnt
SInt[()] SInt
Create an unsigned/signed integer with x bits
Ulnt(x bits) Ulnt
SInt(x bits) SInt
Create an unsigned/signed integer assigned with ‘value’
U(value: Int[,x bits]) Ulnt
U(value: Biglnt[,x bits]) Slnt
S(value: Int[,x bits])
S(value: BigInt[,x bits])
Create an unsigned/signed integer assigned with ‘value’ (Base :
4h7 ‘d” 3 ” ‘b’
U”[[size’ |base]value” ’ ©) Ulnt
S”[[size’ |base]value” Slnt
Create an unsigned integer assigned with the value specified by
1 t
U([x bits,] element, ...) clements Ulnt
S([x bits,] element, ...) SInt

val myUInt = UInt(8 bits)

myUInt := U(2,8 bits)

myUInt := U(2)
myUInt :
myUInt := U"hIA"

myUInt := U"8'h1A"
myUInt := 2

U"0000_0101"

// Base per default is binary => 5

// Base could be x (base 16)

/7
/7
Vs
Vs

h (base 16)
d (base 10)
o (base 8)
b (base 2)

// You can use a Scala Int as a literal value

val myBool := myUInt === U(7 -> true, (6 downto 0) -> false)
=== U(myUInt.range -> true)

val myBool := myUInt

// For assignment purposes, you can omit the U/S, which also allows the use of the.
— [default -> ???] feature

(continues on next page)

40

Chapter 5. Data types

SpinalHDL Documentation

(continued from previous page)

myUInt := (default -> true) // Assign myUInt with "11111111"
myUInt := (myUInt.range -> true) // Assign myUInt with "11111111"
myUInt := (7 -> true, default -> false) // Assign myUInt with "10000000"
myUInt := ((4 downto 1) -> true, default -> false) // Assign myUInt with "00011110"

5.3.3 Operators

The following operators are available for the UInt and SInt types:

Logic
Operator Description Return type
XNy Logical XOR Bool
~X Bitwise NOT T(w(x) bits)
x&y Bitwise AND T(max(w(xy) bits)
x|y Bitwise OR T(max(w(xy) bits)
xNy Bitwise XOR T(max(w(xy) bits)
x.xorR XOR all bits of x Bool
x.0orR OR all bits of x Bool
x.andR AND all bits of x Bool
X>>y Arithmetic shift right, y : Int T(w(x) -y bits)
X>>y Arithmetic shift right, y : Ulnt T(w(x) bits)
X <<y Arithmetic shift left, y : Int T(w(x) + y bits)
X <<y Arithmetic shift left, y : Ulnt T(w(x) + max(y) bits)
X[>>y Logical shift right, y : Int/Ulnt T(w(x) bits)
X|<<y Logical shift left, y : Int/UlInt T(w(x) bits)
x.rotateLeft(y) Logical left rotation, y : Ulnt/Int T(w(x) bits)
x.rotateRight(y) Logical right rotation, y : UInt/Int T(w(x) bits)
x.clearAll[()] Clear all bits
x.setAll[()] Set all bits
x.setAllTo(value : | Set all bits to the given Boolean value
Boolean)
x.setAllTo(value : Bool) | Set all bits to the given Bool value

// Bitwise operator
val a, b, ¢ = SInt(32 bits)
c := ~(a & b) // Inverse(a AND b)

val all_1 = a.andR // Check that all bits are equal to 1

// Logical shift
val uint_10bits = uint_8bits << 2 // shift left (resulting in 10 bits)
val shift_8bits = uint_8bits |<< 2 // shift left (resulting in 8 bits)

// Logical rotation
val myBits = uint_8bits.rotatelLeft(3) // left bit rotation

// Set/clear
val a = B"8'x42"
when(cond) {
a.setAll() // set all bits to True when cond is True
}

5.3. Uint/Sint VL]

SpinalHDL Documentation

Arithmetic
Operator | Description Return
X+y Addition T(max(w(x), w(y)), bits)
X+Ny Addition with carry T(max(w(x), w(y) + 1), bits)
X +y Addition by sat carry bit T(max(w(x), w(y)), bits)
X-y Subtraction T(max(w(x), w(y)), bits)
X -y Subtraction with carry T(max(w(x), w(y) + 1), bits)
X-|y Subtraction by sat carry bit | T(max(w(x), w(y)), bits)
X *y Multiplication T(w(x) + w(y)), bits)
x/y Division T(w(x), bits)
X %y Modulo T(w(x), bits)
// Addition
val res = mySInt_1 + mySInt_2
Comparison
Operator | Description Return type
X===y Equality Bool
Xx=/=y Inequality Bool
X>y Greater than Bool
X>=y Greater than or equal | Bool
X<y Less than Bool
X<=y Less than or equal Bool
// Comparison between two SInts
myBool := mySInt_1 > mySInt_2
// Comparison between a UInt and a literal
myBool := myUInt_8bits >= U(3, 8 bits)
when(myUInt_8bits === 3) {
}
Type cast
Operator | Description Return
x.asBits Binary cast to Bits Bits(w(x), bits)
x.asUInt Binary cast to Ulnt Ulnt(w(x), bits)
x.asSInt Binary cast to Slnt SInt(w(x), bits)
x.asBools | Cast into a array of Bool Vec(Bool, w(x))
Sx: T) Cast a Data into a SInt SInt(w(x), bits)
Ux: T) Cast a Data into an Ulnt Ulnt(w(x), bits)
x.intoSInt | convert to SInt expand signbit | SInt(w(x) + 1, bits)

To cast a Bool, a Bits, or an SInt into a UInt, you can use U(something). To cast things into an SInt, you can

use S(something).

42

Chapter 5. Data types

SpinalHDL Documentation

// Cast an SInt to Bits
val myBits = mySInt.asBits

// Create a Vector of Bool
val myVec = myUInt.asBools

// Cast a Bits to SInt
val mySInt = S(myBits)

Bit extraction

Operator Description Return

x(y) Readbit, y : Int/Ulnt Bool
x(offset, width) Read bitfield, offset: Ulnt, width: Int T(width bits)
x(range) Read a range of bits. Ex : myBits(4 downto 2) T(range bits)
x(y) =z Assign bits, y : Int/UInt Bool
x(offset, width) :==z | Assign bitfield, offset: Ulnt, width: Int T(width bits)
x(range) :=z Assign a range of bit. Ex : myBits(4 downto 2) := U”’010” T(range bits)

// get the bit at index 4
val myBool = myUInt(4)

// assign bit 1 to True
mySInt(1l) := True

// Range

val myUInt_8bits = myUInt_16bits(7 downto 0)
val myUInt_7bits = myUInt_16bits(® to 6)
val myUInt_6bits = myUInt_16Bits(0® until 6)

mySInt_8bits(3 downto 0) := mySInt_4bits

5.3. Uint/SInt

43

SpinalHDL Documentation

Misc
Operator Description Return
x.getWidth Return bitcount Int
x.msb Return the most significant bit Bool
x.Isb Return the least significant bit Bool
x.range Return the range (x.high downto 0) Range
x.high Return the upper bound of the type x Int
X #ity Concatenate, x->high, y->low Bits(w(x)
+ w(y)
bits)
x@@y Concatenate x:T with y:Bool/SInt/UlInt Twx) +
w(y) bits)
x.subdivideIn(y slices) Subdivide x into y slices, y: Int Vec(T, y)
x.subdivideln(y bits) Subdivide x into multiple slices of y bits, y: Int Vec(T,
w(x)y)
x.resize(y) T(y bits)
Return a resized copy of x, if enlarged, it is filled with zero
for Ulnt or filled with the sign for SInt, y: Int
x.resized T(w(x)
. S . bits)
Return a version of x which is allowed to be automatically
resized where needed
myUInt.twoComplement(enUse the two’s complement to transform an Ulnt into an SInt SInt(w(myU]|nt)
Bool) + 1, bits)
mySInt.abs Return the absolute value of the Ulnt value Ulnt(w(myS|nt),
bits)
mySInt.abs(en: Bool) Return the absolute value of the Ulnt value when en is True Ulnt(w(myS|Int),
bits)
mySInt.sign Return most significant bit Bool
x.expand Return x with 1 bit expand T(w(x)+1
bit)
mySInt.absWithSym Return the absolute value of the Ulnt value with symmetric, shrink | Ulnt(w(myS|Int)
1 bit - 1, bits)

myBool := mySInt.lsb // equivalent to mySInt(0)

// Concatenation
val mySInt = mySInt_1 @@ mySInt_1 @@ myBool
val myBits = mySInt_1 ## mySInt_1 ## myBool

// Subdivide

val sel = UInt(2 bits)

val mySIntWord = mySInt_128bits.subdivideIn(32 bits) (sel)
// sel = 0 => mySIntWord = mySInt_128bits(127 downto 96)
// sel = => mySIntWord = mySInt_128bits(95 downto 64)
// sel 2 => mySIntWord = mySInt_128bits(63 downto 32)
// sel = 3 => mySIntWord = mySInt_128bits(31 downto 0)

// If you want to access in reverse order you can do:
val myVector = mySInt_128bits.subdivideIn(32 bits).reverse
val mySIntWord = myVector(sel)

(continues on next page)

44 Chapter 5. Data types

SpinalHDL Documentation

(continued from previous page)

fields with high accuracy concerns, SpinalHDL doesn’t support them yet.

// Resize
myUInt_32bits := U"32'x112233344"
myUInt_8bits := myUInt_32bits.resized // automatic resize (myUInt_8bits = 0x44)
myUInt_8bits = myUInt_32bits.resize(8) // resize to 8 bits (myUInt_8bits = 0x44)
// Two's complement
mySInt := myUInt.twoComplement (myBool)
// Absolute value
mySInt_abs := mySInt.abs
5.3.4 FixPoint operations
For fixpoint, we can divide it into two parts:
» Lower bit operations (rounding methods)
» High bit operations (saturation operations)
Lower bit operations
UInt/SInt(1@ bits)
YT LowerBit
918|716 |5|4]3]2 Pl ,
DpEl"Eltlﬂﬂ
Round(n bhits)
About Rounding: https://en.wikipedia.org/wiki/Rounding
SpinalHDL- Wikipedia- API Mathematic Algo- | re- Sup-
Name Name rithm turn(align=false) | ported
FLOOR RoundDown floor floor(x) w(x)-n bits Yes
FLOOR- RoundToZero floor- sign*floor(abs(x)) w(x)-n bits Yes
TOZERO ToZero
CEIL RoundUp ceil ceil(x) w(x)-n+1 bits Yes
CEILTOINF RoundTolnf ceilTolnf sign*ceil(abs(x)) w(x)-n+1 bits Yes
ROUNDUP RoundHalfUp roundUp floor(x+0.5) w(x)-n+1 bits Yes
ROUNDDOWN | RoundHalf- roundDown | ceil(x-0.5) w(x)-n+1 bits Yes
Down
ROUND- Round- round- sign*ceil(abs(x)-0.5) | w(x)-n+1 bits Yes
TOZERO HalfToZero ToZero
ROUNDTOINF | Round- roundToInf | sign*floor(abs(x)+0.5)| w(x)-n+1 bits Yes
HalfTolnf
ROUNDTO- RoundHalfTo- roundTo- No
EVEN Even Even
ROUND- Round- round- No
TOODD HalfToOdd ToOdd
Note: The RoundToEven and RoundToOdd modes are very special, and are used in some big data statistical

5.3. Uint/SInt

45

https://en.wikipedia.org/wiki/Rounding

SpinalHDL Documentation

You will find ROUNDUP, ROUNDDOWN, ROUNDTOZERO, ROUNDTOINF, ROUNDTOEVEN, ROUNTOODD
are very close in behavior, ROUNDTOINF is the most common. The behavior of rounding in different program-
ming languages may be different.

Programming lan- | default- Example comments

guage RoundType

Matlab ROUNDTOINF | round(1.5)=2,round(2.5)=3;round(-1.5)=- round to
2,round(-2.5)=-3 +Infinity

python2 ROUNDTOINF | round(1.5)=2,round(2.5)=3;round(-1.5)=- round to
2,round(-2.5)=-3 +Infinity

python3 ROUNDTO- round(1.5)=round(2.5)=2; round(-1.5)=round(- | close to Even

EVEN 2.5)=-2

Scala.math ROUNDTOUP round(1.5)=2,round(2.5)=3;round(-1.5)=- always to +In-
1,round(-2.5)=-2 finity

SpinalHDL ROUNDTOINF | round(1.5)=2,round(2.5)=3;round(-1.5)=- round to
2,round(-2.5)=-3 +Infinity

Note: In SpinalHDL ROUNDTOINF is the default RoundType (round = roundToInf)

val
val
val
val
val
val
val
val
val
val
val
val
val B =

DWW wwWwwm W >
1l
L

= SInt(16 bit)
.roundToInf(6 bits) // default 'align = false' with carry, got 11 bit
.roundToInf(6 bits, align
.floor(6 bits)
.floorToZero(6 bits)
.ceil(6 bits)
.ceil(6 bits, align = true) // ceil with carry then sat 1 bit return 10 bit
.ceilToInf(6 bits)
.roundUp (6 bits)
.roundDown (6 bits)
.roundToInf(6 bits)
.roundToZero(6 bits)
.round(6 bits)
—rounding mode

= true) // sat 1 carry bit, got 10 bit

// return 10 bit
// return 10 bit
// ceil with carry so return 11 bit

// SpinalHDL uses roundToInf as the default,

val BO = A.roundToInf(6 bits, align = true) /) -+
// |--> equal
val Bl = A.roundToInf(6 bits, align = false).sat(l) // ---+

Note: Only floor and floorToZero work without the align option; they do not need a carry bit. Other rounding
operations default to using a carry bit.

round Api
API Ulnt/SInt | description Return(align=false) | Return(align=true)
floor Both w(x)-n bits w(x)-n bits
floorToZero SInt equal to floor in Ulnt w(x)-n bits w(x)-n bits
ceil Both w(x)-n+1 bits w(x)-n bits
ceilTolnf SInt equal to ceil in Ulnt w(x)-n+1 bits w(x)-n bits
roundUp Both simple for HW w(x)-n+1 bits w(X)-n bits
roundDown Both w(x)-n+1 bits w(Xx)-n bits
roundTolnf Slnt most Common w(x)-n+1 bits w(x)-n bits
roundToZero | Slnt equal to roundDown in Ulnt w(x)-n+1 bits w(x)-n bits
round Both SpinalHDL chose roundToInf | w(x)-n+1 bits w(x)-n bits

46 Chapter 5. Data types

SpinalHDL Documentation

Note: Although roundToInf is very common, roundUp has the least cost and good timing, with almost no
performance loss. As a result, roundUp is strongly recommended for production use.

High bit operations

UInt/SInt(10 bits)

HighBit T TeTs[a]3[2]1]0
operation
Saturation{m bits)
function | Opera- Positive-Op Negative-Op
tion
sat Saturation | when(Top[w-1, w-n].orR) set max- | When(Top[w-1, w-n].andR) set min-
Value Value
trim Discard N/A N/A
symme- Symmet- N/A minValue = -maxValue
try ric

Symmetric is only valid for SInt.

val
val
val
val
val
val
val

NNWWwWww>
1l

SInt(8 bit)

>k

.sat(3 bits) // return 5
.sat(3) // equal to
.trim(3 bits) // return 5
.trim(3 bits) // return 5
.symmetry // return 8
.sat(3).symmetry // return 5

bits with saturated highest 3 bits

sat(3 bits)

bits with the highest 3 bits discarded
bits with the highest 3 bits discarded
bits and symmetry as (-128~127 to -127~127)
bits and symmetry as (-16~15 to -15~15)

fixTo function

Two ways are provided in UInt/SInt to do fixpoint:

5.3. Uint/SInt

47

SpinalHDL Documentation

val A& = in SInt(18 bits)

3 Jfdefaut roundTolInf

Al9]|8|7|6]|514|13]12]|11]0
||
B! ! 7165143 Poob
Wavi val B = A.floor(3).sat(2)//floor
y val B = A.round(3).sat(3)//round
val B = A.fixTo(7 downto 3, FLOOR)//floor
Wav? val B = A.fixTo(7 downto 3, ROUNDUP)/ /rounduUp
Y& a1l B = A.fixTo(7 downto
val B = A.fixTo(7 downto

3, sym=true)//with symmetric saturation

fixTo is strongly recommended in your RTL work, you don’t need to handle carry bit alignment and bit width
calculations manually like Way1 in the above diagram.

Factory Fix function with Auto Saturation:

Function

Description

Return

fixTo(section, roundType, symmetric)

Factory FixFunction | section.size bits

val
val
val
val
val
val
val

0w www >

SInt(16 bit)

A.fixTo(10® downto
A.fixTo(8 downto
A.fixTo(9 downto
A.fixTo(16 downto
A.fixTo(10® downto
A.fixTo(20 downto

// default RoundType.ROUNDTOINF, sym = false

RoundType
RoundType
RoundType
RoundType
RoundType

.ROUNDUP)
.CEIL, sym
.ROUNDTOINF, sym

.FLOOR) // floor
.FLOOR) // floor

false)

true)

bit, sat 5 bit @ highest
bit, expand 2 bit @ highest

5.4 SpinalEnum

5.4.1 Description

The Enumeration type corresponds to a list of named values.

48

Chapter 5. Data types

SpinalHDL Documentation

5.4.2 Declaration

The declaration of an enumerated data type is as follows:

object Enumeration extends SpinalEnum {
val element®, elementl, ..., elementN = newElement()

}

For the example above, the default encoding is used. The native enumeration type is used for VHDL and a binary
encoding is used for Verilog.

The enumeration encoding can be forced by defining the enumeration as follows:

object Enumeration extends SpinalEnum(defaultEncoding=encodingOfYourChoice) {
val element®, elementl, ..., elementN = newElement()

}

Note: If you want to define an enumeration as in/out for a given component, you have to do as following:
in(MyEnum()) or out (MyEnum())

Encoding

The following enumeration encodings are supported:

Encod- | Bit Description

ing width

native Use the VHDL enumeration system, this is the default encoding
binary- | log2Up(stateC®mity to store states in declaration order (value from O to n-1)
Sequen-

tial

binary- | state- Use Bits to store state. Each bit corresponds to one state
OneHot | Count

Custom encodings can be performed in two different ways: static or dynamic.

/%
* Static encoding
*/
object MyEnumStatic extends SpinalEnum {
val e®, el, e2, e3 = newElement()
defaultEncoding = SpinalEnumEncoding("staticEncoding") (

e®@ > 0,
el > 2,
e2 -> 3,
e3 > 7)
}
/:’r
* Dynamic encoding with the function : _ * 2 + 1
e.g. :ed =0 *2+1=1
el ==1%*2+1=3
e2 =>2%*2+1=275
e3 =>3%*2+1=7
:'r/
val encoding = SpinalEnumEncoding("dynamicEncoding”, _ * 2 + 1)

(continues on next page)

5.4. SpinalEnum 49

SpinalHDL Documentation

(continued from previous page)

object MyEnumDynamic extends SpinalEnum(encoding) {
val e0, el, e2, e3 = newElement()

}

Example

Instantiate an enumerated signal and assign a value to it:

object UartCtrlTxState extends SpinalEnum {
val sIdle, sStart, sData, sParity, sStop = newElement()
}

val stateNext = UartCtrlTxState()
stateNext := UartCtrlTxState.sIdle

// You can also import the enumeration to have visibility of its elements
import UartCtrlTxState._
stateNext := sIdle

5.4.3 Operators

The following operators are available for the Enumeration type:

Comparison

Operator | Description | Return type
X===y Equality Bool
X=/=y Inequality Bool

import UartCtrlTxState._

val stateNext = UartCtrlTxState()

stateNext := sIdle
when(stateNext === sStart) {
}

switch(stateNext) {
is(sIdle) {

}
is(sStart) {

}

50 Chapter 5. Data types

SpinalHDL Documentation

Type cast

Operator | Description Return

x.asBits Binary cast to Bits | Bits(w(x) bits)
x.asUInt Binary cast to Ulnt | Ulnt(w(x) bits)
x.asSInt Binary cast to SInt | SInt(w(x) bits)

import UartCtrlTxState._

val stateNext = UartCtrlTxState()
myBits := sIdle.asBits

5.5 Bundle

5.5.1 Description

The Bundle is a composite type that defines a group of named signals (of any SpinalHDL basic type) under a
single name.

A Bundle can be used to model data structures, buses, and interfaces.

5.5.2 Declaration

The syntax to declare a bundle is as follows:

case class myBundle extends Bundle {
val bundleItem® = AnyType
val bundleIteml = AnyType
val bundleItemN = AnyType

}

For example, a bundle holding a color could be defined as:

case class Color(channelWidth: Int) extends Bundle {
val r, g, b = UInt(channelWidth bits)
}

You can find an APB3 definition among the Spinal HDL examples.

5.5.3 Operators

The following operators are available for the Bundle type:

5.5. Bundle 51

SpinalHDL Documentation

Comparison

Operator | Description | Return type
X===y Equality Bool
X=/=y Inequality Bool

val colorl = Color(8)
colorl.r :
colorl.g :=
colorl.b :

I
(= —]

val color2 = Color(8)

color2.r := 0

color2.g := 0

color2.b =0

myBool := colorl === color2
Type cast

Operator | Description Return
x.asBits Binary cast to Bits | Bits(w(x) bits)

val colorl = Color(8)
val myBits := colorl.asBits

Convert Bits back to Bundle

The .assignFromBits operator can be viewed as the reverse of .asBits.

Operator Description Return
x.assignFromBits(y) Convert Bits (y) to Bundle(x) Unit
x.assignFromBits(y, hi, lo) | Convert Bits (y) to Bundle(x) with high/low boundary | Unit

The following example saves a Bundle called CommonDataBus into a circular buffer (3rd party memory), reads
the Bits out later and converts them back to CommonDataBus format.

52 Chapter 5. Data types

SpinalHDL Documentation

CommonDataBus Input

CommonDataBus Output

.asBits

_Eirzular Buffe
(Black Box of
3" pParty Memory)

.assignFromBits

case class TestBundle () extends Component {
val io = new Bundle {

}

val we
val addrWr
val dataln

val addrRd
val dataOut

in
in

Bool ()
UInt (7 bits)

slave (CommonDataBus())

in

UInt (7 bits)

master (CommonDataBus())

val mm = Ram3rdParty_lw_1lrs (G_DATA_WIDTH = io.datalIn.getBitsWidth,

.io.clk_in
.io.clk_out

.io.we
.io.addr_wr
.io.d

G_ADDR_WIDTH = io.addrWr.getBitsWidth,
G_VENDOR "Intel_Arrial®_M20K™)

clockDomain.readClockWire
clockDomain.readClockWire

io.we
io.addrWr.asBits
io.dataIn.asBits

mm.io.addr_rd := io.addrRd.asBits
io.dataOut.assignFromBits(mm.io.q)
}
5.5. Bundle 53

SpinalHDL Documentation

5.5.4 10 Element direction

When you define a Bundle inside the IO definition of your component, you need to specify its direction.

in/out

If all elements of your bundle go in the same direction you can use in(MyBundle()) or out (MyBundle()).

For example:

val io = new Bundle {
val input = in (Color(8))
val output = out(Color(8))
}

master/slave

If your interface obeys to a master/slave topology, you can use the IMasterSlave trait. Then you have to implement
the function def asMaster(): Unit to set the direction of each element from the master’s perspective. Then
you can use the master (MyBundle()) and slave(MyBundle()) syntax in the IO definition.

For example:

case class HandShake(payloadWidth: Int) extends Bundle with IMasterSlave {
val valid = Bool(Q)
val ready Bool ()
val payload = Bits(payloadWidth bits)

// You have to implement this asMaster function.
// This function should set the direction of each signals from an master point of.
wview
override def asMaster(): Unit = {
out(valid, payload)
in(ready)
}
}

val io = new Bundle {
val input = slave(HandShake(8))
val output = master(HandShake(8))
}

5.6 Vec

5.6.1 Description

A Vec is a composite type that defines a group of indexed signals (of any SpinalHDL basic type) under a single
name.

54 Chapter 5. Data types

SpinalHDL Documentation

5.6.2 Declaration

The syntax to declare a vector is as follows:

Declaration Description
Vec(type: Data, size: Int) Create a vector capable of holding size elements of type Data
Vec(x, y, ...)

Create a vector where indexes point to the provided elements.
This constructor supports mixed element width.

Examples

// Create a vector of 2 signed integers
val myVecOfSInt = Vec(SInt(8 bits), 2)
myVecO£fSInt (0) 2

myVecOfSInt (1) := myVecOfSInt(0) + 3

// Create a vector of 3 different type elements
val myVecOfMixedUInt = Vec(UInt(3 bits), UInt(5 bits), UInt(8 bits))

val x, y, z = UInt(8 bits)
val myVecOf_xyz_ref = Vec(x, y, z)

// Iterate on a vector
for(element <- myVecOf_xyz_ref) {

element := 0 // Assign x, y, z with the value 0
}

// Map on vector
myVecOfMixedUInt.map(_ := 0) // Assign all elements with value 0

// Assign 3 to the first element of the vector
myVecOf_xyz_ref(l) := 3

5.6.3 Operators

The following operators are available for the Vec type:

Comparison

Operator | Description | Return type
X===Yy Equality Bool
X=/=y Inequality Bool

// Create a vector of 2 signed integers
val vec2 = Vec(SInt(8 bits), 2)
val vecl = Vec(SInt(8 bits), 2)

myBool := vec2 === vecl // Compare all elements

5.6. Vec 55

SpinalHDL Documentation

Type cast

Operator | Description Return
x.asBits Binary cast to Bits | Bits(w(x) bits)

// Create a vector of 2 signed integers
val vecl = Vec(SInt(8 bits), 2)

myBits_16bits := vecl.asBits

Misc
Operator Description Return
x.getBitsWidth Return the full size of the Vec Int

// Create a vector of 2 signed integers
val vecl = Vec(SInt(8 bits), 2)

println(vecl.getBitsWidth) // 16

Warning: SpinalHDL fixed-point support is only partially used/tested, if you find any bugs with it, or you
think that some functionality is missing, please create a Github issue. Also, please do not use undocumented
features in your code.

5.7 UFix/SFix

5.7.1 Description

The UFix and SFix types correspond to a vector of bits that can be used for fixed-point arithmetic.

5.7.2 Declaration

The syntax to declare a fixed-point number is as follows:

Unsigned Fixed-Point

Syntax bit resolution max min
width

UFix(peak: ExpNumber, reso- | peak- 27resolution 2/peak-2"resolution 0

lution: ExpNumber) resolution

UFix(peak: ExpNumber, | width 2N\ (peak-width) 2/ peak-2"(peak-width) 0

width: BitCount)

56 Chapter 5. Data types

https://github.com/SpinalHDL/SpinalHDL/issues

SpinalHDL Documentation

Signed Fixed-Point

Syntax bit resolution max min
width
SFix(peak: ExpNumber, reso- | peak- 2/resolution 27peak-2"resolution -
lution: ExpNumber) resolution+1 (2"peak)
SFix(peak: ExpNumber, | width 2N\ (peak-width-1) 2/ peak-2"(peak-width-1) -
width: BitCount) (2"peak)
Format

The chosen format follows the usual way of defining fixed-point number format using Q notation. More information
can be found on the Wikipedia page about the Q number format.

For example Q8.2 will mean a fixed-point number of 8+2 bits, where 8 bits are used for the natural part and 2 bits
for the fractional part. If the fixed-point number is signed, one more bit is used for the sign.

The resolution is defined as being the smallest power of two that can be represented in this number.

Note: To make representing power-of-two numbers less error prone, there is a numeric type in spinal.core
called ExpNumber, which is used for the fixed-point type constructors. A convenience wrapper exists for this type,
in the form of the exp function (used in the code samples on this page).

Examples

// Unsigned Fixed-Point
val UQ_8_2 = UFix(peak = 8 exp, resolution = -2 exp) // bit width = 8 - (-2) = 10 bits
val UQ_8_2 = UFix(8 exp, -2 exp)

val UQ_8_2 = UFix(peak = 8 exp, width = 10 bits)
val UQ_8_2 = UFix(8 exp, 10 bits)

// Signed Fixed-Point

val Q_8_2 = SFix(peak = 8 exp, resolution = -2 exp) // bit width = 8 - (-2) + 1 = 11,
—bits

val Q_8_2 = SFix(8 exp, -2 exp)

val Q_8_2 SFix(peak = 8 exp, width = 11 bits)
val Q_8_2 = SFix(8 exp, 11 bits)

5.7.3 Assignments

Valid Assighments

An assignment to a fixed-point value is valid when there is no bit loss. Any bit loss will result in an error.

If the source fixed-point value is too big, the . truncated function will allow you to resize the source number to
match the destination size.

5.7. UFix/SFix 57

https://en.wikipedia.org/wiki/Q_(number_format)

SpinalHDL Documentation

Example

val il16_m2 = SFix(16 exp, -2 exp)

val i16_0 = SFix(16 exp, O exp)
val i8_m2 = SFix(8 exp, -2 exp)
val ol6_m2 = SFix(16 exp, -2 exp)
val ol6_m@® = SFix(16 exp, O exp)

val 014_m2 = SFix(14 exp, -2 exp)

016_m2 := i16_m2 // OK

0l6_md® := il6_m2 // Not OK, Bit loss
old_m2 := il6_m2 // Not OK, Bit loss
ol6_m®@ := il6_m2.truncated // OK, as it is resized
0l4_m2 := il6_m2.truncated // OK, as it is resized

From a Scala constant

Scala BigInt or Double types can be used as constants when assigning to UFix or SFix signals.

Example

val i4_m2 = SFix(4 exp, -2 exp)
i4_m2 := 1.25 // Will load 5 in i4_m2.raw
i4d_m2 := 4 // Will load 16 in i4_m2.raw

5.7.4 Raw value

The integer representation of the fixed-point number can be read or written by using the raw property.

Example

val UQ_8_2 = UFix(8 exp, 10 bits)
UQ_8_2.raw := 4 // Assign the value corresponding to 1.0
UQ_8_2.raw := U(17) // Assign the value corresponding to 4.25

5.7.5 Operators

The following operators are available for the UFix type:

58 Chapter 5. Data types

SpinalHDL Documentation

Arithmetic
Op-| Description Returned resolu- | Returned amplitude
er- tion
a_
tor
X Addition Min(x.resolution, Max(x.amplitude, y.amplitude)
+ y.resolution)
y
X - | Subtraction Min(x.resolution, Max(x.amplitude, y.amplitude)
y y.resolution)
X Multiplication x.resolution * | x.amplitude * y.amplitude
* y.resolution)
y
X Arithmetic shift right, y : Int x.amplitude >>y x.resolution >>y
>>
y
X Arithmetic shift left, y : Int x.amplitude <<y x.resolution <<y
<<
y
X Arithmetic shift right, y : Int x.amplitude >>y x.resolution
>>|
y
X Arithmetic shift left, y : Int x.amplitude <<y x.resolution
<<|
y
Comparison
Operator | Description Return type
X===y Equality Bool
Xx=/=y Inequality Bool
X >y Greater than Bool
X>=y Greater than or equal | Bool
X>y Less than Bool
X>=y Less than or equal Bool
Type cast
Operator Description Return
x.asBits Binary cast to Bits Bits(w(x) bits)
x.asUInt Binary cast to Ulnt Ulnt(w(x) bits)
x.asSInt Binary cast to Slnt SInt(w(x) bits)
x.asBools Cast into a array of Bool Vec(Bool,width(x))
x.toUInt Return the corresponding Ulnt (with truncation) Ulnt
x.toSInt Return the corresponding SInt (with truncation) Sint
x.toUFix Return the corresponding UFix UFix
x.toSFix Return the corresponding SFix SFix

5.7. UFix/SFix

59

SpinalHDL Documentation

Misc
Name Return Description
x.max Value Return the maximum value storable Double
x.minValue Return the minimum value storable Double
x.resolution x.amplitude * y.amplitude Double

Warning: SpinalHDL floating-point support is under development and only partially used/tested, if you have
any bugs with it, or you think that some functionality is missing, please create a Github issue. Also, please do
not use undocumented features in your code.

5.8 Floating

5.8.1 Description
The Floating type corresponds to IEEE-754 encoded numbers. A second type called RecFloating helps in
simplifying your design by recoding the floating-point value simplify some edge cases in IEEE-754 floating-point.

It’s composed of a sign bit, an exponent field and a mantissa field. The widths of the different fields are defined in
the IEEE-754 or de-facto standards.

This type can be used with the following import:

import spinal.lib.experimental.math._

IEEE-754 floating format

The numbers are encoded into IEEE-754 floating-point format.

Recoded floating format

Since IEEE-754 has some quirks about denormalized numbers and special values, Berkeley proposed another way
of recoding floating-point values.

The mantissa is modified so that denormalized values can be treated the same as the normalized ones.

The exponent field is one bit larger that one of the IEEE-754 number.

The sign bit is kept unchanged between the two encodings.

Examples can be found here

Zero

The zero is encoded with the three leading zeros of the exponent field being set to zero.

60 Chapter 5. Data types

https://github.com/SpinalHDL/SpinalHDL/issues
https://en.wikipedia.org/wiki/IEEE_floating_point
https://github.com/ucb-bar/berkeley-hardfloat/blob/master/README.md

SpinalHDL Documentation

Denormalized values

Denormalized values are encoded in the same way as a normal floating-point number. The mantissa is shifted so
that the first one becomes implicit. The exponent is encoded as 107 (decimal) plus the index of the highest bit set
to 1.

Normalized values

The recoded mantissa for normalized values is exactly the same as the original IEEE-754 mantissa. The recoded
exponent is encoded as 130 (decimal) plus the original exponent value.

Infinity

The recoded mantissa value is treated as don’t care. The recoded exponent three highest bits is 6 (decimal), the rest
of the exponent can be treated as don’t care.

NaN

The recoded mantissa for normalized values is exactly the same as the original IEEE-754 mantissa. The recoded
exponent three highest bits is 7 (decimal), the rest of the exponent can be treated as don’t care.

5.8.2 Declaration

The syntax to declare a floating-point number is as follows:

IEEE-754 Number

Syntax Description
Floating(exponentSize: Int, mantissaS- | IEEE-754 Floating-point value with a custom exponent and man-
ize: Int) tissa size

Floating16() IEEE-754 Half precision floating-point number
Floating32() IEEE-754 Single precision floating-point number
Floating64() IEEE-754 Double precision floating-point number
Floating128() IEEE-754 Quad precision floating-point number

Recoded floating-point number

Syntax Description

RecFloating(exponentSize: Int, mantissaS- | Recoded Floating-point value with a custom exponent and man-
ize: Int) tissa size

RecFloating16() Recoded Half precision floating-point number
RecFloating32() Recoded Single precision floating-point number
RecFloating64() Recoded Double precision floating-point number
RecFloating128() Recoded Quad precision floating-point number

5.8. Floating 61

SpinalHDL Documentation

5.8.3 Operators

The following operators are available for the Floating and RecFloating types:

Type cast
Operator Description Return
x.asBits Binary cast to Bits Bits(w(x)
bits)
x.asBools Cast into a array of Bool Vec(Bool,width(x))
x.toUlInt(size: Int) Return the corresponding Ulnt (with truncation) Ulnt
x.toSInt(size: Int) Return the corresponding SInt (with truncation) Sint
x.fromUlnt Return the corresponding Floating (with truncation) Ulnt
x.fromSInt Return the corresponding Floating (with truncation) SInt

5.9 Introduction

The language provides 5 base types, and 2 composite types that can be used.
* Base types: Bool , Bits , Ulnt for unsigned integers, SInt for signed integers and Enum.

» Composite types: Bundle and Vec.

: Data

BaseType: | Bundle Vec

Enum| | Bool | :BitVector :

Bits Ulnt Sint

In addition to the base types, Spinal has support under development for:
e Fixed-point numbers (partial support)
* Floating-point numbers (experimental support)

Finally, a special type is available for checking equality between a BitVector and a bits constant that contains holes
(don’t care values). An example is shown below:

62 Chapter 5. Data types

SpinalHDL Documentation

val myBits = Bits(8 bits)
val itMatch = myBits === M"00--10--" // - don't care value

5.9. Introduction

63

SpinalHDL Documentation

64 Chapter 5. Data types

CHAPTER
SIX

STRUCTURING

6.1 Component and hierarchy

6.1.1 Introduction

Like in VHDL and Verilog, you can define components that can be used to build a design hierarchy. However, in
SpinalHDL, you don’t need to bind their ports at instantiation:

class AdderCell extends Component {
// Declaring external ports in a Bundle called ‘io" is recommended
val io = new Bundle {
val a, b, cin = in Bool()
val sum, cout = out Bool()

}

// Do some logic

io.sum := io.a * io.b A jo.cin

io.cout := (io.a & io.b) | (io.a & io.cin) | (io.b & io.cin)

}

class Adder(width: Int) extends Component {

// Create 2 AdderCell instances

val cell® = new AdderCell

val celll = new AdderCell

celll.io.cin := cell®.io.cout // Connect cout of cell® to cin of celll

// Another example which creates an array of ArrayCell instances

val cellArray = Array.fill(width) (new AdderCell)

cellArray(l).io.cin := cellArray(0).io.cout // Connect cout of cell(0) to cin of.
—cell(l)

}

Tip:

val io = new Bundle { ... }
Declaring external ports in a Bundle called io is recommended. If you name your bundle io, SpinalHDL will
check that all of its elements are defined as inputs or outputs.

65

SpinalHDL Documentation

6.1.2 Input / output definition

The syntax to define inputs and outputs is as follows:

Syntax Description Return
in Bool()/out Bool() Create an input Bool/output Bool Bool
in/out Bits/UInt/SInt[(x bit)] Create an input/output of the corresponding type Bits/UInt/SInt
in/out(T) For all other data types, you may have to add some | T
brackets around it. Sorry, this is a Scala limitation.
master/slave(T) This syntax is provided by the spinal.lib library (If | T

you annotate your object with the slave syntax, then
import spinal.lib.slave instead). T should ex-
tend IMasterSlave — Some documentation is avail-
able here. You may not actually need the brackets, so
master T is fine as well.

There are some rules to follow with component interconnection:
* Components can only read output and input signals of child components.

* Components can read their own output port values (unlike in VHDL).

Tip: If for some reason you need to read signals from far away in the hierarchy (such as for debugging or temporal
patches), you can do it by using the value returned by some .where.else.theSignal.pull()

6.1.3 Pruned signals

SpinalHDL only generates things which are directly or indirectly required to drive the outputs of your top-level
entity.

All other signals (the useless ones) are removed from the RTL generation and are inserted into a list of pruned
signals. You can get this list via the printPruned and the printPrunedIo functions on the generated
SpinalReport object:

class TopLevel extends Component {
val io = new Bundle {
val a,b = in UInt(8 bits)
val result = out UInt(8 bits)
}

io.result := io.a + io.b

val unusedSignal = UInt(8 bits)
val unusedSignal2 = UInt(8 bits)

unusedSignal2 := unusedSignal

}

object Main {
def main(args: Array[String]) {
SpinalVhdl (new TopLevel).printPruned()
//This will report :
// [Warning] Unused wire detected : toplevel/unusedSignal : UInt[8 bits]
// [Warning] Unused wire detected : toplevel/unusedSignal2 : UInt[8 bits]

}
¥

66 Chapter 6. Structuring

SpinalHDL Documentation

If you want to keep a pruned signal in the generated RTL for debugging reasons, you can use the keep function of
that signal:

class TopLevel extends Component {
val io = new Bundle {
val a, b = in UInt(8 bits)
val result = out UInt(8 bits)
}

io.result := io.a + io.b

val unusedSignal = UInt(8 bits)
val unusedSignal2 = UInt(8 bits).keep()

unusedSignal 0
unusedSignal2 := unusedSignal

}

object Main {
def main(args: Array[String]) {
SpinalVhdl (new TopLevel).printPruned()
// This will report nothing
}
}

6.1.4 Parametrized Hardware (“Generic” in VHDL, “Parameter” in Verilog)

If you want to parameterize your component, you can give parameters to the constructor of the component as
follows:

class MyAdder(width: BitCount) extends Component {
val io = new Bundle {
val a, b = in UInt(width)
val result = out UInt(width)
}
io.result := io.a + io.b

¥

object Main {
def main(args: Array[String]) {
SpinalVhdl (new MyAdder(32 bits))
}
}

If you have several parameters, it is a good practice to give a specific configuration class as follows:

case class MySocConfig(axiFrequency : HertzNumber,
onChipRamSize : BigInt,
cpu : RiscCoreConfig,
iCache : InstructionCacheConfig)

class MySoc(config: MySocConfig) extends Component {

}

6.1. Component and hierarchy 67

SpinalHDL Documentation

6.1.5 Synthesized component names

Within a module, each component has a name, called a “partial name”. The “full” name is built by joining every
component’s parent name with “_”, for example: io_clockDomain_reset. You can use setName to replace this
convention with a custom name. This is especially useful when interfacing with external components. The other
methods are called getName, setPartialName, and getPartialName respectively.

When synthesized, each module gets the name of the Scala class defining it. You can override this as well with
setDefinitionName.

6.2 Area

6.2.1 Introduction

Sometimes, creating a Component to define some logic is overkill because you:
* Need to define all construction parameters and 10 (verbosity, duplication)
* Split your code (more than needed)

For this kind of case you can use an Area to define a group of signals/logic:

class UartCtrl extends Component {

val timer = new Area {
val counter = Reg(UInt(8 bit))

val tick = counter === 0
counter := counter - 1
when(tick) {

counter := 100
}

}

val tickCounter = new Area {
val value = Reg(UInt(3 bit))
val reset = False
when(timer.tick) { // Refer to the tick from timer area
value := value + 1
}
when(reset) {
value := 0
}
}

val stateMachine = new Area {

}
}

Tip:

In VHDL and Verilog, sometimes prefixes are used to separate variables into logical sections. It is suggested that
you use Area instead of this in SpinalHDL.

Note: ClockingArea is a special kind of Area that allows you to define chunks of hardware which use a given

68 Chapter 6. Structuring

SpinalHDL Documentation

ClockDomain

6.3 Function

6.3.1 Introduction
The ways you can use Scala functions to generate hardware are radically different than VHDL/Verilog for many
reasons:

* You can instantiate registers, combinational logic, and components inside them.

* You don’t have to play with process/@always blocks that limit the scope of assignment of signals.

 Everything is passed by reference, which allows easy manipulation.

For example, you can give a bus to a function as an argument, then the function can internally read/write to
it. You can also return a Component, a Bus, or anything else from Scala and the Scala world.

6.3.2 RGB to gray

For example, if you want to convert a Red/Green/Blue color into greyscale by using coefficients, you can use
functions to apply them:

// Input RGB color
val r, g, b = UInt(8 bits)

// Define a function to multiply a UInt by a Scala Float value.
def coef(value: UInt, by: Float): UInt = (value * U((255 * by).toInt, 8 bits) >> 8)

// Calculate the gray level
val gray = coef(r, 0.3f) + coef(g, 0.4f) + coef(b, 0.3f)

6.3.3 Valid Ready Payload bus

For instance, if you define a simple bus with valid, ready, and payload signals, you can then define some useful
functions inside of it.

case class MyBus(payloadWidth: Int) extends Bundle with IMasterSlave {
val valid = Bool(Q)
val ready = Bool()
val payload = Bits(payloadWidth bits)

// Define the direction of the data in a master mode
override def asMaster(): Unit = {

out(valid, payload)

in(ready)
}

// Connect that to this

def <<(that: MyBus): Unit = {
this.valid := that.valid
that.ready this.ready
this.payload := that.payload

}

(continues on next page)

6.3. Function 69

SpinalHDL Documentation

(continued from previous page)

// Connect this to the FIFO input, return the fifo output
def queue(size: Int): MyBus = {
val fifo = new MyBusFifo(payloadWidth, size)
fifo.io.push << this
return fifo.io.pop
}
}

class MyBusFifo(payloadWidth: Int, depth: Int) extends Component {
val io = new Bundle {
val push = slave(MyBus(payloadWidth))
val pop = master(MyBus(payloadWidth))
}

val mem = Mem(Bits(payloadWidth bits), depth)

YA

6.4 Clock domains

6.4.1 Introduction

In SpinalHDL, clock and reset signals can be combined to create a clock domain. Clock domains can be applied
to some areas of the design and then all synchronous elements instantiated into those areas will then implicitly use
this clock domain.

Clock domain application works like a stack, which means that if you are in a given clock domain you can still
apply another clock domain locally.

6.4.2 Instantiation

The syntax to define a clock domain is as follows (using EBNF syntax):

ClockDomain(
clock: Bool
[,reset: Bool]
[,softReset: Bool]
[,clockEnable: Bool]
[,frequency: IClockDomainFrequency]
[,config: ClockDomainConfig]

)

This definition takes five parameters:

70 Chapter 6. Structuring

SpinalHDL Documentation

Argu- | Description De-
ment fault
clock | Clock signal that defines the domain
reset | Reset signal. If a register exists which needs a reset and the clock domain doesn’t provide | null
one, an error message will be displayed
softRes®eset which infers an additional synchronous reset null
clockEndtebegoal of this signal is to disable the clock on the whole clock domain without having to | null
manually implement that on each synchronous element
frequendytlows you to specify the frequency of the given clock domain and later read it in your design | Un-
known-
Fre-
quency
configl Specify the polarity of signals and the nature of the reset Cur-
rent
config

An applied example to define a specific clock domain within the design is as follows:

val coreClock = Bool()
val coreReset = Bool()

// Define a new clock domain
val coreClockDomain = ClockDomain(coreClock, coreReset)

// Use this domain in an area of the design

val coreArea = new ClockingArea(coreClockDomain) {
val coreClockedRegister = Reg(UInt(4 bit))

}

Configuration

In addition to constructor parameters, the following elements of each clock domain are configurable via a
ClockDomainConfigclass:

Property Valid values
clockEdge RISING, FALLING
resetKind ASYNC, SYNC, and BOOT which is supported by some FPGAs (where FF values are loaded by

the bitstream)
resetActiveLeyvdIIGH, LOW
softResetActiyvdI&GH: 1L.OW
clockEnableAci Hi€lte ¢OW

class CustomClockExample extends Component {
val io = new Bundle {
val clk = in Bool()
val resetn = in Bool()
val result = out UInt (4 bits)
}

// Configure the clock domain
val myClockDomain = ClockDomain(
clock = io.clk,
reset = io.resetn,
config = ClockDomainConfig(

(continues on next page)

6.4. Clock domains 71

SpinalHDL Documentation

(continued from previous page)

clockEdge = RISING,
resetKind = ASYNC,
resetActivelLevel = LOW

)
)

// Define an Area which use myClockDomain
val myArea = new ClockingArea(myClockDomain) {
val myReg = Reg(UInt(4 bits)) init(7)

myReg := myReg + 1
io.result := myReg

}
}

By default, a ClockDomain is applied to the whole design. The configuration of this default domain is:
* Clock : rising edge
* Reset : asynchronous, active high
* No clock enable

This corresponds to the following ClockDomainConfig:

val defaultCC = ClockDomainConfig(
clockEdge = RISING,
resetKind ASYNC,
resetActivelevel = HIGH

Internal clock

An alternative syntax to create a clock domain is the following:

ClockDomain.internal (
name: String,
[config: ClockDomainConfig,]
[withReset: Boolean,]
[withSoftReset: Boolean,]
[withClockEnable: Boolean,]
[frequency: IClockDomainFrequency]

)

This definition takes six parameters:

Argument Description Default

name Name of clk and reset signal

config Specify polarity of signals and the nature of the reset Current con-
fig

withReset Add a reset signal true

withSoftRese®dd a soft reset signal false

withClockEnghldd a clock enable false

frequency | Frequency of the clock domain Unknown-
Frequency

72 Chapter 6. Structuring

SpinalHDL Documentation

The advantage of this approach is to create clock and reset signals with a known/specified name instead of an
inherited one.

Once created, you have to assign the ClockDomain’s signals, as shown in the example below:

class InternalClockWithPllExample extends Component {
val io = new Bundle {
val clk100M = in Bool()
val aReset in Bool()
val result = out UInt (4 bits)
}
// myClockDomain.clock will be named myClockName_clk
// myClockDomain.reset will be named myClockName_reset
val myClockDomain = ClockDomain.internal ("myClockName')

// Instantiate a PLL (probably a BlackBox)
val pll = new P11Q)
pll.io.clkIn := io.clk10O0M

// Assign myClockDomain signals with something
myClockDomain.clock := pll.io.clockOut
myClockDomain.reset := io.aReset || !pll.io.

// Do whatever you want with myClockDomain
val myArea = new ClockingArea(myClockDomain) {
val myReg = Reg(UInt(4 bits)) init(7)
myReg := myReg + 1

io.result := myReg

External clock

You can define a clock domain which is driven by the outside anywhere in your source. It will then automatically
add clock and reset wires from the top level inputs to all synchronous elements.

ClockDomain.external (
name: String,
[config: ClockDomainConfig,]
[withReset: Boolean,]
[withSoftReset: Boolean,]
[withClockEnable: Boolean,]
[frequency: IClockDomainFrequency]

The arguments to the ClockDomain.external function are exactly the same as in the ClockDomain.internal
function. Below is an example of a design using ClockDomain.external:

class ExternalClockExample extends Component {
val io = new Bundle {
val result = out UInt (4 bits)
}

// On the top level you have two signals
// myClockName_clk and myClockName_reset
val myClockDomain = ClockDomain.external ("myClockName'™)

(continues on next page)

6.4. Clock domains 73

SpinalHDL Documentation

(continued from previous page)

val myArea = new ClockingArea(myClockDomain) {
val myReg = Reg(UInt(4 bits)) init(7)
myReg := myReg + 1

io.result := myReg

Context

You can retrieve in which clock domain you are by calling ClockDomain.current anywhere.

The returned ClockDomain instance has the following functions that can be called:

name Description Return
fre- Return the frequency of the clock domain Double
quency.getValue

hasReset Return if the clock domain has a reset signal Boolean
hasSoftReset | Return if the clock domain has a soft reset signal Boolean
hasClockEn- | Return if the clock domain has a clock enable signal Boolean
able

readClock- Return a signal derived from the clock signal Bool
Wire

read- Return a signal derived from the soft reset signal Bool
ResetWire

readSoftRe- | Return a signal derived from the reset signal Bool
setWire

readClock- Return a signal derived from the clock enable signal Bool
EnableWire

isResetAc- Return True when the reset is active Bool
tive

isSoftRese- Return True when the soft reset is active Bool
tActive

isClockEn- Return True when the clock enable is active Bool
ableActive

An example is included below where a UART controller uses the frequency specification to set its clock divider:

val coreClockDomain = ClockDomain(coreClock, coreReset,..
- frequency=FixedFrequency (100e6))

val coreArea = new ClockingArea(coreClockDomain) {

val ctrl = new UartCtrl()

ctrl.io.config.clockDivider := (coreClk.frequency.getValue / 57.6e3 / 8).toInt
}

74 Chapter 6. Structuring

SpinalHDL Documentation

6.4.3 Clock domain crossing

SpinalHDL checks at compile time that there are no unwanted/unspecified cross clock domain signal reads. If you
want to read a signal that is emitted by another ClockDomain area, you should add the crossClockDomain tag
to the destination signal as depicted in the following example:

/S —
// | | (crossClockDomain) | / | |
// dataln -->| [> [-========- > [--> dataOut
// | FF | | FF | | FF |
// clkA -->| | clkB -->| | clkB -->| |
// TIstA > ___ | I'stB -->|_____ | IstB -->[_____ /

// Implementation where clock and reset pins are given by components' I0
class CrossingExample extends Component {
val io = new Bundle {
val clkA = in Bool()
val rstA = in Bool()

val clkB in Bool()
val rstB = in Bool()

val dataIn = in Bool()
val dataOut = out Bool()

}

// sample dataIn with clkA
val area_clkA = new ClockingArea(ClockDomain(io.clkA,io.rstA)) {
val reg = RegNext(io.dataIn) init(False)

}

// 2 register stages to avoid metastability issues

val area_clkB = new ClockingArea(ClockDomain(io.clkB,io.rstB)) {
val buf@® = RegNext(area_clkA.reg) init(False) addTag(crossClockDomain)
val bufl = RegNext (buf®) init(False)

}

io.dataOut := area_clkB.bufl

// Alternative implementation where clock domains are given as parameters
class CrossingExample(clkA : ClockDomain,clkB : ClockDomain) extends Component {
val io = new Bundle {
val dataIn = in Bool()
val dataOut = out Bool()

}

// sample datalIn with clkA

val area_clkA = new ClockingArea(clkA) {
val reg = RegNext(io.dataIn) init(False)

}

// 2 register stages to avoid metastability issues
val area_clkB = new ClockingArea(clkB) {

(continues on next page)

6.4. Clock domains 75

SpinalHDL Documentation

(continued from previous page)

val buf®
val bufl
}

RegNext(area_clkA.reg) init(False) addTag(crossClockDomain)
RegNext (buf®) init(False)

io.dataOut := area_clkB.bufl

}

In general, you can use 2 or more flip-flop driven by the destination clock domain to prevent metastability. The
BufferCC(input: T, init: T = null, bufferDepth: Int = 2) function providedin spinal.lib.
_ will instantiate the necessary flip-flops (the number of flip-flops will depends on the bufferDepth parameter)
to mitigate the phenomena.

class CrossingExample(clkA : ClockDomain,clkB : ClockDomain) extends Component {
val io = new Bundle {
val dataIn = in Bool()
val dataOut = out Bool()

}

// sample dataIn with clkA
val area_clkA = new ClockingArea(clkA) {
val reg = RegNext(io.dataIn) init(False)

}

// BufferCC to avoid metastability issues
val area_clkB = new ClockingArea(clkB) {
val bufl = BufferCC(area_clkA.reg, False)

3

io.dataOut := area_clkB.bufl

Warning: The BufferCC function is only for signals of type Bit, or Bits operating as Gray-coded counters
(only 1 bit-flip per clock cycle), and can not used for multi-bit cross-domain processes.

6.4.4 Special clocking Areas

Slow Area

A SlowArea is used to create a new clock domain area which is slower than the current one:

class TopLevel extends Component {

// Use the current clock domain : 100MHz
val areaStd = new Area {
val counter = out(CounterFreeRun(16).value)

3

// Slow the current clockDomain by 4 : 25 MHz
val areaDiv4 = new SlowArea(4) {
val counter = out(CounterFreeRun(16).value)

}

// Slow the current clockDomain to 50MHz

(continues on next page)

76 Chapter 6. Structuring

SpinalHDL Documentation

(continued from previous page)

val area50Mhz = new SlowArea(50 MHz) {
val counter = out(CounterFreeRun(16).value)
}
}

def main(args: Array[String]) {
new SpinalConfig(
defaultClockDomainFrequency = FixedFrequency(100 MHz)
) .generateVhdl (new TopLevel)
}

ResetArea

A ResetArea is used to create a new clock domain area where a special reset signal is combined with the current
clock domain reset:

class TopLevel extends Component {
val specialReset = Bool()

// The reset of this area is done with the specialReset signal
val areaRst_1 = new ResetArea(specialReset, false) {
val counter = out(CounterFreeRun(16).value)

}

// The reset of this area is a combination between the current reset and the.
—»SpecialReset
val areaRst_2 = new ResetArea(specialReset, true) {
val counter = out(CounterFreeRun(16).value)

ClockEnableArea

A ClockEnableArea is used to add an additional clock enable in the current clock domain:

class TopLevel extends Component {
val clockEnable = Bool()

// Add a clock enable for this area
val area_l = new ClockEnableArea(clockEnable) {
val counter = out(CounterFreeRun(16).value)

}

6.4. Clock domains 77

SpinalHDL Documentation

6.5 Instantiate VHDL and Verilog IP

6.5.1 Description

A blackbox allows the user to integrate an existing VHDL/Verilog component into the design by just specifying its

interfaces. It’s up to the simulator or synthesizer to do the elaboration correctly.

6.5.2 Defining an blackbox

An example of how to define a blackbox is shown below:

// Define a Ram as a BlackBox
class Ram_lw_lr(wordWidth: Int, wordCount: Int) extends BlackBox {

// Add VHDL Generics / Verilog parameters to the blackbox

// You can use String, Int, Double, Boolean, and all SpinalHDL base
// types as generic values

addGeneric("wordCount", wordCount)
addGeneric("wordWidth", wordWidth)

// Define IO of the VHDL entity / Verilog module
val io = new Bundle {

val clk = in

val wr = new
val en =
val addr =
val data =

}

val rd = new
val en =
val addr =
val data =

}

}

Bool()

Bundle {

in Bool()

in UInt (log2Up(wordCount) bit)
in Bits (wordWidth bit)

Bundle {

in Bool()

in UInt (log2Up(wordCount) bit)
out Bits (wordWidth bit)

// Map the current clock domain to the io.clk pin
mapClockDomain(clock=io.clk)

}

In VHDL, signals of type Bool will be translated into std_logic and Bits into std_logic_vector. If you

want to get std_ulogic, you have to use a BlackBoxULogic instead of BlackBox.

In Verilog, BlackBoxUlogic has no effect.

class Ram_lw_Ilr(wordWidth: Int, wordCount: Int) extends BlackBoxULogic {

}

78

Chapter 6. Structuring

SpinalHDL Documentation

6.5.3 Generics

There are two different ways to declare generics:

class Ram(wordWidth: Int, wordCount: Int) extends BlackBox {
addGeneric("wordCount", wordCount)
addGeneric("wordWidth", wordWidth)

// OR

val generic = new Generic {
val wordCount = Ram.this.wordCount
val wordWidth = Ram.this.wordWidth
}

6.5.4 Instantiating a blackbox

Instantiating a BlackBox is just like instantiating a Component:

// Create the top level and instantiate the Ram
class TopLevel extends Component {
val io = new Bundle {
val wr = new Bundle {
val en = in Bool()
val addr = in UInt (log2Up(16) bit)
val data = in Bits (8 bit)
}
val rd = new Bundle {
val en = in Bool()
val addr = in UInt (log2Up(16) bit)
val data = out Bits (8 bit)
}
}

// Instantiate the blackbox
val ram = new Ram_1w_1r(8,16)

// Connect all the signals
io.wr.en <> ram.io.wr.en

io.wr.addr <> ram.io.wr.addr
io.wr.data <> ram.io.wr.data
io.rd.en <> ram.io.rd.en

io.rd.addr <> ram.io.rd.addr
io.rd.data <> ram.io.rd.data

}

object Main {
def main(args: Array[String]): Unit = {
SpinalVhdl (new TopLevel)
}
}

6.5. Instantiate VHDL and Verilog IP 79

SpinalHDL Documentation

6.5.5 Clock and reset mapping

In your blackbox definition you have to explicitly define clock and reset wires. To map signals of a ClockDomain to
corresponding inputs of the blackbox you can use the mapClockDomain or mapCurrentClockDomain function.
mapClockDomain has the following parameters:

name type default description
clockDo- ClockDo- | ClockDo- | Specify the clockDomain which provides the signals
main main main.current

clock Bool Nothing Blackbox input which should be connected to the clockDomain clock

reset Bool Nothing Blackbox input which should be connected to the clockDomain reset

enable Bool Nothing Blackbox input which should be connected to the clockDomain en-
able

mapCurrentClockDomain has almost the same parameters as mapClockDomain but without the clockDomain.

For example:

class MyRam(clkDomain: ClockDomain) extends BlackBox {

val io = new Bundle {
val clkA = in Bool()

val clkB = in Bool()
}
// Clock A is map on a specific clock Domain
mapClockDomain(clkDomain, io.clkA)

// Clock B is map on the current clock domain
mapCurrentClockDomain(io.clkB)

6.5.6 io prefix

In order to avoid the prefix “io_" on each of the IOs of the blackbox, you can use the function noIoPrefix() as
shown below :

// Define the Ram as a BlackBox
class Ram_lw_I1lr(wordWidth: Int, wordCount: Int) extends BlackBox {

val generic = new Generic {
val wordCount = Ram_1lw_1r.this.wordCount
val wordWidth = Ram_lw_1r.this.wordWidth

}

val io = new Bundle {
val clk = in Bool()

val wr = new Bundle {
val en = in Bool()
val addr = in UInt (log2Up(_wordCount) bit)
val data = in Bits (_wordWidth bit)
3
val rd = new Bundle {
val en = in Bool()

(continues on next page)

80 Chapter 6. Structuring

SpinalHDL Documentation

(continued from previous page)

val addr = in UInt (log2Up(_wordCount) bit)
val data = out Bits (_wordWidth bit)
}
}
noloPrefix()

mapCurrentClockDomain(clock=i0.clk)

}

6.5.7 Rename all io of a blackbox

IOs of a BlackBox or Component can be renamed at compile-time using the addPrePopTask function. This
function takes a no-argument function to be applied during compilation, and is useful for adding renaming passes,
as shown in the following example:

class MyRam() extends Blackbox {

val io = new Bundle {
val clk = in Bool()
val portA = new Bundle{

val ¢cs = in Bool(Q)

val rwn = in Bool()

val dIn = in Bits(32 bits)

val dOut = out Bits(32 bits)
}
val portB = new Bundle{

val cs = in Bool()

val rwun = in Bool(Q)

val dIn = in Bits(32 bits)
val dOut = out Bits(32 bits)
3
}

// Map the clk
mapCurrentClockDomain(io.clk)

// Remove io_ prefix
noloPrefix()

// Function used to rename all signals of the blackbox
private def renameIO(): Unit = {
io.flatten.foreach(bt => {
if(bt.getName().contains("portA")) bt.setName(bt.getName().repalce("portA_", "
oMy o+ A
if(bt.getName().contains("portB")) bt.setName(bt.getName().repalce("portB_",
=" + "_B")
b
}

// Execute the function renameIO after the creation of the component
addPrePopTask(() => renameIO())
}

// This code generate these names:

(continues on next page)

6.5. Instantiate VHDL and Verilog IP 81

SpinalHDL Documentation

(continued from previous page)

// clk
// cs_A, rwn_A, dIn_A, dOut_A
// cs_B, rwn_B, dIn_B, dOut_B

6.5.8 Add RTL source

With the function addRTLPath() you can associate your RTL sources with the blackbox. After the generation of
your SpinalHDL code you can call the function mergeRTLSource to merge all of the sources together.

class MyBlackBox() extends Blackbox {

val io = new Bundle {

val clk = in Bool(Q)
val start = in Bool()
val dIn = in Bits(32 bits)

val dOut = out Bits(32 bits)
val ready = out Bool()
}

// Map the clk
mapCurrentClockDomain(io.clk)

// Remove io_ prefix
noloPrefix()

// Add all rtl dependencies

addRTLPath("./rtl/RegisterBank.v") // Add a verilog file
addRTLPath(s"./rtl/myDesign.vhd") // Add a vhdl file
addRTLPath(s" ${sys.env("MY_PROJECT") }/myTopLevel.vhd") // Use an environement,,
—variable MY_PROJECT (System.getenv("MY_PROJECT"))
}

val report = SpinalVhdl(new MyBlackBox)
report.mergeRTLSource("mergeRTL") // Merge all rtl sources into mergeRTL.vhd and.
—mergeRTL.v files

6.5.9 VHDL - No numeric type

If you want to use only std_logic_vector in your blackbox component, you can add the tag noNumericType
to the blackbox.

class MyBlackBox() extends BlackBox{
val io = new Bundle {
val clk = in Bool()
val increment = in Bool()
val initValue = in UInt(8 bits)
val counter = out UInt(8 bits)
}

mapCurrentClockDomain(io.clk)

noloPrefix()

(continues on next page)

82 Chapter 6. Structuring

SpinalHDL Documentation

(continued from previous page)

addTag(noNumericType) // Only std_logic_vector
}

The code above will generate the following VHDL.:

component MyBlackBox is
port(
clk : in std_logic;
increment : in std_logic;
initValue : in std_logic_vector(7 downto 0);
counter : out std_logic_vector(7 downto 0)
s
end component;

6.6 Preserving names

6.6.1 Introduction

This page will describe how SpinalHDL propagate names from the scala code to the generated hardware. Knowing
them should enable you to preserve those names as much as possible to generate understandable netlists.

6.6.2 Nameable base class

All the things which can be named in SpinalHDL extends the Nameable base class which.
So in practice, the following classes extends Nameable :

* Component

* Area

e Data (Ulnt, SInt, Bundle, ...)

There is a few example of that Nameable API

class MyComponent extends Component{

val a, b, ¢, d = Bool(Q)

b.setName("rawrr") // Force name

c.setName("rawrr", weak = true) // Propose a name, will not be applied if a.
—Stronger name is already applied

d.setCompositeName(b, postfix = "wuff") // Force toto to be named as b.getName() +
wwuff"
}

Will generation :

module MyComponent (

);

wire a;

wire rawrr;

wire c;

wire rawrr_wuff;
endmodule

In general, you don’t realy need to access that API, unless you want to do tricky stuff for debug reasons or for
elaboration purposes.

6.6. Preserving names 83

SpinalHDL Documentation

6.6.3 Name extraction from Scala

First, since version 1.4.0, SpinalHDL use a scala compiler plugin which can provide a call back each time a new
val is defined during the construction of an class.

There is a example showing more or less how SpinalHDL itself is implemented :

//spinal.idslplugin.ValCallback is the Scala compiler plugin feature which will,,
—provide the callbacks
class Component extends spinal.idslplugin.ValCallback{
override def valCallback[T](ref: T, name: String) : T = {
println(s"Got $ref named $name") // Here we just print what we got as a demo.
ref
}
}

class UlInt
class Bits
class MyComponent extends Component{
val two = 2
val wuff = "miaou"
val toto = new UInt
val rawrr = new Bits

}

object Debug3 extends App{
new MyComponent ()
// 4 This will print :
// Got 2 named two
// Got miaou named wuff
// Got spinal.tester.code.sandbox.UInt@691a7{f8f named toto
// Got spinal.tester.code.sandbox.Bits@161b062a named rawrr

}

Using that ValCallback “introspection” feature, SpinalHDL’s Component classes are able to be aware of their
content and its name.

But this also mean that if you want something to get a name, and you only rely on this automatic naming feature,
the reference to your Data (Ulnt, Slnt, ...) instances should be stored somewhere in a Component val.

For instance :

class MyComponent extends Component {
val a,b = in UInt(8 bits) // Will be properly named
val toto = out UInt(8 bits) // same

def doStuff(): Unit = {
val tmp = UInt(8 bits) // This will not be named, as it isn't stored anywhere in.
—a component val (but there is a solution explained later)

tmp := 0x20
toto := tmp
}
doStuff()
}

Will generate :

module MyComponent (
input [7:0] a,

(continues on next page)

84 Chapter 6. Structuring

SpinalHDL Documentation

(continued from previous page)

input [7:0] b,
output [7:0] toto
);
//Note that the tmp signal defined in scala was "shortcuted" by SpinalHDL, as it.
—was unamed and technicaly "shortcutable"
assign toto = 8'h20;
endmodule

6.6.4 Areain a Component

One important aspect in the naming system is that you can define new namespaces inside components and manip-
ulate

For instance via Area :

class MyComponent extends Component {
val logicA = new Area{ //This define a new namespace named "logicA
val toggle = Reg(Bool) //This register will be named "logicA_toggle"
toggle := !toggle
}
}

Will generate

module MyComponent (

input clk,
input reset
);
reg logicA_toggle;

always @ (posedge clk) begin
logicA_toggle <= (! logicA_toggle);
end
endmodule

6.6.5 Area in a function

You can also define function which will create new Area which will provide a namespace for all its content :

class MyComponent extends Component {
def isZero(value: UInt) = new Area {
val comparator = value === 0

}

val value = in UInt (8 bits)
val somelogic = isZero(value)

val result = out Bool()
result := somelLogic.comparator

Which will generate :

module MyComponent (
input [7:0] value,
output result

(continues on next page)

6.6. Preserving names 85

SpinalHDL Documentation

(continued from previous page)

);

wire somelLogic_comparator;

assign somelLogic_comparator = (value == 8'h0);
assign result = somelogic_comparator;

endmodule

6.6.6 Composite in a function

Added in SpinalHDL 1.5.0, Composite which allow you to create a scope which will use as prefix another Name-
able:

class MyComponent extends Component {
//Basicaly, a Composite is an Area that use its construction parameter as namespace.

wprefix
def isZero(value: UInt) = new Composite(value) {
val comparator = value === 0

}.comparator //Note we don't return the Composite, but the element of the.
—scomposite that we are interested in

val value = in UInt (8 bits)
val result = out Bool()
result := isZero(value)

Will generate :

module MyComponent (

input [7:0] value,
output result
);
wire value_comparator;
assign value_comparator = (value == 8'h0);

assign result = value_comparator;

endmodule

6.6.7 Composite chains

You can also chain composites :

class MyComponent extends Component {
def isZero(value: UInt) = new Composite(value) {
val comparator = value ===
}.comparator

def inverted(value: Bool) = new Composite(value) {
val inverter = !value
}.inverter

val value = in UInt(8 bits)

(continues on next page)

86 Chapter 6. Structuring

SpinalHDL Documentation

(continued from previous page)

val result = out Bool()
result := inverted(isZero(value))

Will generate :

module MyComponent (

input [7:0] value,
output result
)
wire value_comparator;
wire value_comparator_inverter;
assign value_comparator = (value == 8'h0);
assign value_comparator_inverter = (! value_comparator);
assign result = value_comparator_inverter;
endmodule

6.6.8 Composite in a Bundle’s function

This behaviour can be very useful when implementing Bundles utilities. For instance in the spinal.lib.Stream class
is defined the following :

class Stream[T <: Data](val payloadType : HardType[T]) extends Bundle {
val valid = Bool(Q)
val ready Bool()
val payload = payloadType()

def queue(size: Int): Stream[T] = new Composite(this){
val fifo = new StreamFifo(payloadType, size)
fifo.io.push << self // 'self refer to the Composite construction argument.,
— (this in that example). It avoid having to do a boring 'Stream.this'
}.fifo.io.pop

def m2sPipe(): Stream[T] = new Composite(this) {
val m2sPipe = Stream(payloadType)

val rValid = RegInit(False)
val rData = Reg(payloadType)

self.ready := (!m2sPipe.valid) || m2sPipe.ready

when(self.ready) {
rValid := self.valid
rData := self.payload
}

m2sPipe.valid := rValid
m2sPipe.payload := rData
}.m2sPipe
}

Which allow nested calls while preserving the names :

6.6. Preserving names 87

SpinalHDL Documentation

class MyComponent extends Component {
val source = slave(Stream(UInt(8 bits)))
val sink = master(Stream(UInt(8 bits)))
sink << source.queue(size = 16).m2sPipe()

}

Will generate

module MyComponent (

input source_valid,
output source_ready,
input [7:0] source_payload,
output sink_valid,
input sink_ready,
output [7:0] sink_payload,
input clk,
input reset
);
wire source_fifo_io_pop_ready;
wire source_fifo_io_push_ready;
wire source_fifo_io_pop_valid;
wire [7:0] source_fifo_io_pop_payload;
wire [4:0] source_fifo_io_occupancy;
wire [4:0] source_fifo_io_availability;
wire source_fifo_io_pop_m2sPipe_valid;
wire source_fifo_io_pop_m2sPipe_ready;
wire [7:0] source_fifo_io_pop_m2sPipe_payload;
reg source_fifo_io_pop_rValid;
reg [7:0] source_fifo_io_pop_rData;

StreamFifo source_fifo (

.io_push_valid (source_valid), //1
.io_push_ready (source_fifo_io_push_ready), //o
.io_push_payload (source_payload), //1
.io_pop_valid (source_fifo_io_pop_valid), //o
.io_pop_ready (source_fifo_io_pop_ready), //1i
.io_pop_payload (source_fifo_io_pop_payload), //o
.io_flush (1'b®), //1
.io_occupancy (source_fifo_io_occupancy), //o
.io_availability (source_fifo_io_availability), //o
.clk (clk), //1
.reset (reset) J/1

s
assign source_ready = source_fifo_io_push_ready;
assign source_fifo_io_pop_ready = ((1'bl & (! source_fifo_io_pop_m2sPipe_valid)).
— || source_fifo_io_pop_m2sPipe_ready);
assign source_fifo_io_pop_m2sPipe_valid = source_fifo_io_pop_rValid;
assign source_fifo_io_pop_m2sPipe_payload = source_fifo_io_pop_rData;
assign sink_valid = source_fifo_io_pop_m2sPipe_valid;
assign source_fifo_io_pop_m2sPipe_ready = sink_ready;
assign sink_payload = source_fifo_io_pop_m2sPipe_payload;
always @ (posedge clk or posedge reset) begin
if (reset) begin
source_fifo_io_pop_rValid <= 1'b0;
end else begin
if(source_fifo_io_pop_ready)begin
source_fifo_io_pop_rValid <= source_fifo_io_pop_valid;

(continues on next page)

88 Chapter 6. Structuring

SpinalHDL Documentation

(continued from previous page)

end
end
end

always @ (posedge clk) begin
if(source_fifo_io_pop_ready)begin
source_fifo_io_pop_rData <= source_fifo_io_pop_payload;
end
end
endmodule

6.6.9 Unamed signal handling

Since 1.5.0, for signal which end up without name, SpinalHDL will find a signal which is driven by that unamed
signal and propagate its name. This can produce useful results as long you don’t have too large island of unamed
stuff.

The name attributed to such unamed signal is : _zz_ + drivenSignal.getName()

Note that this naming pattern is also used by the generation backend when they need to breakup some specific
expressions or long chain of expression into multiple signals.

Verilog expression splitting

There is an instance of expressions (ex : the + operator) that SpinalHDL need to express in dedicated signals to
match the behaviour with the Scala API :

class MyComponent extends Component {
val a,b,c,d = in UInt(8 bits)
val result =a +b +c +d

}

Will generate

module MyComponent (

input [7:0] a,
input [7:0] b,
input [7:0] c,
input [7:0] d
);
wire [7:0] _zz_result;
wire [7:0] _zz_result_1;
wire [7:0] result;

assign _zz_result = (_zz_result_1 + c);
assign _zz_result_1 = (a + b);
assign result = (_zz_result + d);

endmodule

6.6. Preserving names 89

SpinalHDL Documentation

Verilog long expression splitting

There is a instance of how a very long expression chain will be splited up by SpinalHDL :

class MyComponent extends Component {

val conditions = in Vec(Bool, 64)

val result = conditions.reduce(_ || _) // Do a logical or between all the.
—conditions elements

}

Will generate

module MyComponent (

input conditions_0,

input conditions_1,

input conditions_2,

input conditions_3,

input conditions_58,

input conditions_59,

input conditions_60,

input conditions_61,

input conditions_62,

input conditions_63
);

wire _zz_result;

wire _zz_result_1;

wire _zz_result_2;

wire result;

assign _zz_result = ((CCCCCCCCCCCC(Czz_result_1 || conditions_32) || conditions_
33) || conditions_34) || conditions_35) || conditions_36) || conditions_37) ||.
—,conditions_38) || conditions_39) || conditions_40) || conditions_41) || conditions_
—42) || conditions_43) || conditions_44) || conditions_45) || conditions_46) ||.
—conditions_47);

assign _zz_result_1 = (C(CCCCCCCCCCCCC(_zz_result_2 || conditions_16) || conditions_
—17) || conditions_18) || conditions_19) || conditions_20) || conditions_21) ||.
—conditions_22) || conditions_23) || conditions_24) || conditions_25) || conditions_
526) || conditions_27) || conditions_28) || conditions_29) || conditions_30) ||.
—conditions_31);

assign _zz_result_2 = ((C(CCCCCCCCC((Cconditions_® || conditions_1) || conditions_2).
|| conditions_3) || conditions_4) || conditions_5) || conditions_6) || conditions_
—7) || conditions_8) || conditions_9) || conditions_10) || conditions_11) ||.
—conditions_12) || conditions_13) || conditions_14) || conditions_15);

assign result = ((CCCCCCCCCCCCCC_zz_result || conditions_48) || conditions_49) ||.
—conditions_50) || conditions_51) || conditions_52) || conditions_53) || conditions_
—54) || conditions_55) || conditions_56) || conditions_57) || conditions_58) ||.
—conditions_59) || conditions_60) || conditions_61) || conditions_62) || conditions_
~63);
endmodule

90 Chapter 6. Structuring

SpinalHDL Documentation

When statement condition

The when(cond) { } statements condition are generated into separated signals named when_ + fileName + line. A
similar thing will also be done for switch statements.

//In file Test.scala

class MyComponent extends Component {
val value = in UInt(8 bits)
val isZero = out(Bool())
val counter = out(Reg(UInt(8 bits)))

isZero := False

when(value === 0){ //At line 117
isZero := True
counter := counter + 1

}

Will generate

module MyComponent (

input [7:0] value,
output reg isZero,
output reg [7:0] counter,
input clk,
input reset
);
wire when_Test_1117;
always @ (*) begin
isZero = 1'b0;
if(when_Test_1117)begin
isZero = 1'bl;
end
end
assign when_Test_1117 = (value == 8'h0);
always @ (posedge clk) begin
if(when_Test_1117)begin
counter <= (counter + 8'h01);
end
end
endmodule

In last resort

In last resort, if a signal has no name (anonymous signal), SpinalHDL will seek for a named signal which is driven
by the anonymous signal, and use it as a name postfix :

class MyComponent extends Component {
val enable = in Bool()
val value = out UInt(8 bits)

def count(cond : Bool): UInt = {
val ret = Reg(UInt(8 bits)) // This register is not named (on purpose for the.
—example)
when(cond) {

(continues on next page)

6.6. Preserving names 91

SpinalHDL Documentation

(continued from previous page)

ret := ret + 1
}
return ret
}
value := count(enable)

Will generate

module MyComponent (

input enable,
output [7:0] value,
input clk,
input reset
);
reg [7:0] _zz_value; //Name given to the register in last resort by.

—looking what was driven by it

assign value = _zz_value;
always @ (posedge clk) begin
if(enable)begin
_zz_value <= (_zz_value + 8'h01);
end
end
endmodule

This last resort naming skim isn’t ideal in all cases, but can help out.

Note that signal starting with a underscore aren’t stored in the Verilator waves (on purpose)

92 Chapter 6. Structuring

CHAPTER
SEVEN

SEMANTIC

7.1 Assignments

7.1.1 Assignments

There are multiple assignment operators:

Symbol Description

= Standard assignment, equivalent to <= in VHDL/Verilog. The last assignment to a variable
wins; the value is not updated until the next simulation delta cycle.
\= Equivalent to :=in VHDL and = in Verilog. The value is updated instantly in-place.
<> Automatic connection between 2 signals or two bundles of the same type. Direction is in-
ferred by using signal direction (in/out). (Similar behavior to :=)

// Because of hardware concurrency, ‘a 1is always read as 'l' by b and c
val a, b, ¢ = UInt(4 bits)

a =0
b :=a
a:=1 // a :=1 "wins"
c = a

var x = UInt(4 bits)
val y, z = UInt(4 bits)

x :=0

y 1= X // v read x with the value 0
x \=x +1

Z =X // z read x with the value 1

// Automatic connection between two UART interfaces.
uartCtrl.io.uart <> io.uart

It is important to understand that in SpinalHDL, the nature of a signal (combinational/sequential) is defined in
its declaration, not by the way it is assigned. All datatype instances will define a combinational signal, while a
datatype instance wrapped with Reg(. . .) will define a sequential (registered) signal.

val a = UInt(4 bits) // Define a combinational signal

val b Reg(UInt(4 bits)) // Define a registered signal

val ¢ = Reg(UInt(4 bits)) init(®) // Define a registered signal which is set to 0.
—when a reset occurs

93

SpinalHDL Documentation

7.1.2 Width checking

SpinalHDL checks that the bit count of the left side and the right side of an assignment matches. There are multiple
ways to adapt the width of a given BitVector (Bits, UInt, SInt):

Resizing techniques Description

X :=y.resized Assign x with a resized copy of y, resize value is automatically inferred to
match x

X := y.resize(newWidth) Assign x with a resized copy of y, size is manually calculated

There is one case where Spinal automatically resizes a value:

Assignment Problem SpinalHDL action
myUIntOf_8bit := U(3) U(3) creates an Ulnt of 2 bits, which | Because U(3) is a “weak” bit count in-
doesn’t match the left side (8 bits) ferred signal, SpinalHDL resizes it au-
tomatically

7.1.3 Combinatorial loops

SpinalHDL checks that there are no combinatorial loops (latches) in your design. If one is detected, it raises an
error and SpinalHDL will print the path of the loop.

7.2 When/Switch/Mux

7.2.1 When

As in VHDL and Verilog, signals can be conditionally assigned when a specified condition is met:

when(condl) {

// Execute when condl is true
}.elsewhen(cond2) {

// Execute when (not condl) and cond2
}.otherwise {

// Execute when (not condl) and (not cond2)

}

7.2.2 Switch

As in VHDL and Verilog, signals can be conditionally assigned when a signal has a defined value:

switch(x) {
is(valuel) {

// Execute when x === valuel
}
is(value2) {
// Execute when x === value2
}
default {
// Execute if none of precedent conditions met
}
}

94 Chapter 7. Semantic

SpinalHDL Documentation

7.2.3 Local declaration

It is possible to define new signals inside a when/switch statement:

val x, y = UInt(4 bits)
val a, b = UInt(4 bits)

when(cond) {
val tmp = a + b

X = tmp
y = tmp + 1
} otherwise {
x =0
y (=0
}

Note: SpinalHDL checks that signals defined inside a scope are only assigned inside that scope.

7.2.4 Mux

If you just need a Mux with a Bool selection signal, there are two equivalent syntaxes:

Syntax Return Description

Mux(cond, whenTrue, whenFalse) T Return whenTrue when cond is True,
whenFalse otherwise

cond ? whenTrue | whenFalse T Return whenTrue when cond is True,
whenFalse otherwise

val cond = Bool

val whenTrue, whenFalse = UInt(8 bits)

val muxOutput = Mux(cond, whenTrue, whenFalse)
val muxOutput2 = cond ? whenTrue | whenFalse

7.2.5 Bitwise selection

A bitwise selection looks like the VHDL when syntax.

Example

val bitwiseSelect = UInt(2 bits)
val bitwiseResult = bitwiseSelect.mux(
0 -> (io.src® & io.srcl),
1 -> (io.src® | io.srcl),
2 -> (io.src® * io.srcl),
default -> (io.srcO®)
)

Also, if all possible values are covered in your mux, you can omit the default value:

val bitwiseSelect = UInt(2 bits)
val bitwiseResult = bitwiseSelect.mux(
® -> (io.src® & io.srcl),

(continues on next page)

7.2. When/Switch/Mux 95

SpinalHDL Documentation

(continued from previous page)

1 -> (io.src® | io.srcl),
2 -> (io.src® * io.srcl),
3 -> (io0.src®)

)

muxLists(...) is another bitwise selection which takes a sequence of tuples as input. Below is an example of
dividing a Bits of 128 bits into 32 bits:

sel

Y

data(127 downto 96)

v

data(95 downto 64) dataword

— -

data(63 downto 32)

Y

data(31 downto 0) |———®

val sel
val data

UInt(2 bits)
Bits(128 bits)

// Dividing a wide Bits type into smaller chunks, using a mux:
val dataWord = sel.muxList(for (index <- 0 until 4) yield (index, data(index*32+32-1.
—downto index*32)))

// A shorter way to do the same thing:
val dataWord = data.subdivideIn(32 bits)(sel)

7.3 Rules

7.3.1 Introduction
The semantics behind SpinalHDL are important to learn, so that you understand what is really happening behind
the scenes, and how to control it.
These semantics are defined by multiple rules:
* Signals and registers are operating concurrently with each other (parallel behavioral, as in VHDL and Ver-
ilog)
* An assignment to a combinational signal is like expressing a rule which is always true
* An assignment to a register is like expressing a rule which is applied on each cycle of its clock domain
* For each signal, the last valid assignment wins

» Each signal and register can be manipulated as an object during hardware elaboration in a OOP manner

96 Chapter 7. Semantic

https://en.wikipedia.org/wiki/Object-oriented_programming

SpinalHDL Documentation

7.3.2 Concurrency

The order in which you assign each combinational or registered signal has no behavioral impact.

For example, both of the following pieces of code are equivalent:

val a, b, ¢ = UInt(8 bits) // Define 3 combinational signals
c:=a+b // cwill be set to 7
b :=2 // b will be set to 2
a:=b+3 // awill be set to 5

This is equivalent to:

val a, b, c¢c = UInt(8 bits) // Define 3 combinational signals
b :=2 // b will be set to 2
a:=b+ 3 // awill be set to 5
c:=a+b // cwill be set to 7

More generally, when you use the := assignment operator, it’s like specifying a new rule for the left side sig-
nal/register.

7.3.3 Last valid assignment wins

If a combinational signal or register is assigned multiple times, the last valid one wins.

As an example:

val x, yv = Bool() // Define two combinational signals
val result = UInt(8 bits) // Define a combinational signal

result := 1
when(x) {
result :
when(y)
result := 3

~ |l
N

}
}

This will produce the following truth table:

X y => | result
False | False 1

False | True
True | False
True | True

W | —

7.3.4 Signal and register interactions with Scala (OOP reference + Functions)
In SpinalHDL, each hardware element is modeled by a class instance. This means you can manipulate instances
by using their references, such as passing them as arguments to a function.

As an example, the following code implements a register which is incremented when inc is True and cleared when
clear is True (clear has priority over inc) :

val inc, clear = Bool() // Define two combinational signals/wires
val counter = Reg(UInt(8 bits)) // Define an 8 bit register

(continues on next page)

7.3. Rules 97

SpinalHDL Documentation

(continued from previous page)

when(inc) {

counter := counter + 1
}
when(clear) {

counter := 0 // If inc and clear are True, then this assignment wins (Last.
—valid assignment rule)

}

You can implement exactly the same functionality by mixing the previous example with a function that assigns to
counter:

val inc, clear = Bool(Q)
val counter = Reg(UInt(8 bits))

def setCounter(value : UInt): Unit = {
counter := value

}

when(inc) {
setCounter(counter + 1) // Set counter with counter + 1
}
when(clear) {
counter := 0

}

You can also integrate the conditional check inside the function:

val inc, clear = Bool(Q)
val counter = Reg(UInt(8 bits))

def setCounterWhen(cond : Bool,value : UInt): Unit = {
when(cond) {
counter := value
}
}

setCounterWhen(cond = inc, value = counter + 1)
setCounteriWhen(cond = clear, value = 0)

And also specify what should be assigned to the function:

val inc, clear = Bool()
val counter = Reg(UInt(8 bits))

def setSomethingWhen(something : UInt, cond : Bool, value : UInt): Unit = {
when(cond) {
something := value
}
}

setSomethingWhen(something = counter, cond = inc, value = counter + 1)
setSomethingWhen(something = counter, cond = clear, value 0)

All of the previous examples are strictly equivalent both in their generated RTL and also in the SpinalHDL com-
piler’s perspective. This is because SpinalHDL only cares about the Scala runtime and the objects instantiated
there, it doesn’t care about the Scala syntax itself.

In other words, from a generated RTL generation / SpinalHDL perspective, when you use functions in Scala which

98 Chapter 7. Semantic

SpinalHDL Documentation

generate hardware, it is like the function was inlined. This is also true case for Scala loops, as they will appear in
unrolled form in the generated RTL.

7.3. Rules 99

SpinalHDL Documentation

100 Chapter 7. Semantic

CHAPTER
EIGHT

SEQUENTIAL LOGIC

8.1 Registers

8.1.1 Introduction

Creating registers in SpinalHDL is very different than in VHDL or Verilog.

In Spinal, there are no process/always blocks. Registers are explicitly defined at declaration. This difference from
traditional event-driven HDL has a big impact:

* You can assign registers and wires in the same scope, meaning the code doesn’t need to be split between
process/always blocks

¢ It make things much more flexible (see Functions)
Clocks and resets are handled separately, see the Clock domain chapter for details.

8.1.2 Instantiation

There are 4 ways to instantiate a register:

Syntax Description

Reg(type : Data) Register of the given type

RegInit(resetValue : Data) Register loaded with the given resetValue when a reset
occurs

RegNext(nextValue : Data) Register that samples the given nextValue each cycle

RegNextWhen(nextValue : Data, cond : Register that samples the given nextValue when a con-

Bool) dition occurs

Here is an example declaring some registers:

// Ulnt register of 4 bits
val regl = Reg(UInt(4 bit))

// Register that samples regl each cycle
val reg2 = RegNext(regl + 1)

// Ulnt register of 4 bits initialized with 0 when the reset occurs
val reg3 = RegInit(U"0000")

reg3 := reg2

when(reg2 === 5) {
reg3 := OxF

}

(continues on next page)

101

SpinalHDL Documentation

(continued from previous page)

// Register that samples reg3 when cond is True
val reg4 = RegNextWhen(reg3, cond)

The code above will infer the following logic:

oo reg2
1 .
clk —p> D Q-
clk-p cond=E |4
clk=p>

reset

Note: The reg3 example above shows how you can assign the value of a RegInit register. It’s possible to use the
same syntax to assign to the other register types as well (Reg, RegNext, RegNextWhen). Just like in combinational
assignments, the rule is ‘Last assignment wins’, but if no assignment is done, the register keeps its value.

Also, RegNext is an abstraction which is built over the Reg syntax. The two following sequences of code are
strictly equivalent:

// Standard way

val something = Bool()
val value = Reg(Bool())
value := something

// Short way
val something = Bool()
val value = RegNext(something)

8.1.3 Reset value

In addition to the RegInit(value : Data) syntax which directly creates the register with a reset value, you
can also set the reset value by calling the init(value : Data) function on the register.

// Ulnt register of 4 bits initialized with 0 when the reset occurs
val regl = Reg(UInt(4 bit)) init(0)

If you have a register containing a Bundle, you can use the init function on each element of the Bundle.

case class ValidRGB() extends Bundle{
val valid = Bool(Q)
val r, g, b = UInt(8 bits)

}

val reg = Reg(ValidRGB())
reg.valid init(False) // Only the valid if that register bundle will have a reset.
—value.

102 Chapter 8. Sequential logic

SpinalHDL Documentation

8.1.4 Initialization value for simulation purposes

For registers that don’t need a reset value in RTL, but need an initialization value for simulation (to avoid x-
propagation), you can ask for a random initialization value by calling the randBoot () function.

// UInt register of 4 bits initialized with a random value
val regl = Reg(UInt(4 bit)) randBoot()

8.2 RAM/ROM

8.2.1 Syntax

To create a memory in SpinalHDL, the Mem class should be used. It allows you to define a memory and add read
and write ports to it.

The following table shows how to instantiate a memory:

Syntax Description

Mem(type : Data, size : Int) Create a RAM

Mem(type : Data, initialContent : Create a ROM. If your target is an FPGA, because the

Array[Data]) memory can be inferred as a block ram, you can still
create write ports on it.

Note: If you want to define a ROM, elements of the initialContent array should only be literal values (no
operator, no resize functions). There is an example Zere.

Note: To give a RAM initial values, you can also use the init function.

The following table show how to add access ports on a memory :

8.2. RAM/ROM 103

SpinalHDL Documentation

tax

yrbescription

tu

m

merijaddirenspus write

data

merAGynchronous read

Synchronous write with an optional mask. If no enable is specified, it’s automatically inferred from the
conditional scope where this function is called

mem.write(

address

data

[enable]

[mask]

Asynchronous read with an optional read-under-write policy

mem.read Async(

address

[readUnderWrite]

m

Synchronous read with an optional enable, read-under-write policy, and clockCrossing mode

em.readSync(

address

[enable]
[readUnderWrite]

[clockCrossing]

cnier gvraflgritg port.
data is written when enable && write.
Retyya.the read data, the read occurs when enable is true

data
enable

write

104

[mask] Chapter 8. Sequential lo

[readUnderWrite]

r1 1Yy« 7

gic

SpinalHDL Documentation

Note: If for some reason you need a specific memory port which is not implemented in Spinal, you can always
abstract over your memory by specifying a BlackBox for it.

Important: Memory ports in SpinalHDL are not inferred, but are explicitly defined. You should not use coding
templates like in VHDL/Verilog to help the synthesis tool to infer memory.

Here is a example which infers a simple dual port ram (32 bits * 256):

val mem = Mem(Bits(32 bits), wordCount = 256)
mem.write(

enable = io.writeValid,
address = io.writeAddress,
data = io.writeData

)

io.readData := mem.readSync(
enable = io.readValid,

address = io.readAddress

8.2.2 Read-under-write policy

This policy specifies how a read is affected when a write occurs in the same cycle to the same address.

Kinds Description

dontCare Don’t care about the read value when the case occurs
readFirst The read will get the old value (before the write)
writeFirst The read will get the new value (provided by the write)

Important: The generated VHDL/Verilog is always in the readFirst mode, which is compatible with dontCare
but not with writeFirst. To generate a design that contains this kind of feature, you need to enable automatic
memory blackboxing.

8.2. RAM/ROM 105

SpinalHDL Documentation

8.2.3 Mixed-width ram

You can specify ports that access the memory with a width that is a power of two fraction of the memory width
using these functions:

Syntax Description
Similar to mem.write

mem.writeMixedWidth(
address
data
[readUnderWrite]
)

Similar to mem.readAsync, but in place of returning the read value, it drives the sig-
nal/object given as the data argument
mem.read AsyncMixed Width(

address
data

[readUnderWrite]

Similar to mem. readSync, but in place of returning the read value, it drives the signal/object
given as the data argument
mem.readSyncMixedWidth(

address
data
[enable]

[readUnderWrite]

[clockCrossing]

Equivalent to mem.readWriteSync

mem.readWriteSyncMixed Width(
address
data
enable
write
[mask]

[readUnderWrite]

[clockCrossing]

Important: As for read-under-write policy, to use this feature you need to enable automatic memory blackboxing,

106 Chapter 8. Sequential logic

SpinalHDL Documentation

because there is no universal VHDL/Verilog language template to infer mixed-width ram.

8.2.4 Automatic blackboxing

Because it’s impossible to infer all ram kinds by using regular VHDL/Verilog, SpinalHDL integrates an optional
automatic blackboxing system. This system looks at all memories present in your RTL netlist and replaces them
with blackboxes. Then the generated code will rely on third party IP to provide the memory features, such as the
read-during-write policy and mixed-width ports.

Here is an example of how to enable blackboxing of memories by default:

def main(args: Array[String]) {
SpinalConfig()
.addStandardMemBlackboxing(blackboxAll)
.generateVhdl (new TopLevel)
}

If the standard blackboxing tools don’t do enough for your design, do not hesitate to create a Github issue. There
is also a way to create your own blackboxing tool.

Blackboxing policy

There are multiple policies that you can use to select which memory you want to blackbox and also what to do
when the blackboxing is not feasible:

Kinds Description
blackboxAll

Blackbox all memory.
Throw an error on unblackboxable memory

blackboxAllWhatsYouCan | Blackbox all memory that is blackboxable
blackboxRequestedAndUninferable

Blackbox memory specified by the user and memory that is known to be
uninferable (mixed-width, ...).

Throw an error on unblackboxable memory

blackboxOnlyIfRequested

Blackbox memory specified by the user
Throw an error on unblackboxable memory

To explicitly set a memory to be blackboxed, you can use its generateAsBlackBox function.

val mem = Mem(Rgb(rgbConfig), 1 << 16)
mem.generateAsBlackBox ()

You can also define your own blackboxing policy by extending the MemBlackboxingPolicy class.

8.2. RAM/ROM 107

https://github.com/SpinalHDL/SpinalHDL/issues

SpinalHDL Documentation

Standard memory blackboxes

Shown below are the VHDL definitions of the standard blackboxes used in SpinalHDL.:

-- Simple asynchronous dual port (1 write port, 1 read port)
component Ram_lw_1ra is

generic(
wordCount : integer;
wordWidth : integer;
technology : string;
readUnderWrite : string;
wrAddressWidth : integer;
wrDataWidth : integer;
wrMaskWidth : integer;
wrMaskEnable : boolean;
rdAddressWidth : integer;
rdDataWidth : integer

s

port(
clk : in std_logic;
wr_en : in std_logic;
wr_mask : in std_logic_vector;
wr_addr : in unsigned;
wr_data : in std_logic_vector;
rd_addr : in unsigned;
rd_data : out std_logic_vector

s

end component;

-- Simple synchronous dual port (1 write port, 1 read port)
component Ram_lw_lrs is

generic(
wordCount : integer;
wordWidth : integer;
clockCrossing : boolean;
technology : string;
readUnderWrite : string;
wrAddressWidth : integer;
wrDataWidth : integer;
wrMaskWidth : integer;
wrMaskEnable : boolean;
rdAddressWidth : integer;
rdDataWidth : integer;
rdEnEnable : boolean

s

port(
wr_clk : in std_logic;
wr_en : in std_logic;
wr_mask : in std_logic_vector;
wr_addr : in unsigned;
wr_data : in std_logic_vector;
rd_clk : in std_logic;
rd_en : in std_logic;
rd_addr : in unsigned;
rd_data : out std_logic_vector

s

end component;

(continues on next page)

108 Chapter 8. Sequential logic

SpinalHDL Documentation

(continued from previous page)

-- Single port (1 readlirite port)
component Ram_lwrs is
generic(
wordCount : integer;
wordWidth : integer;
readUnderWrite : string;
technology : string
s
port(
clk : in std_logic;
en : in std_logic;
wr : in std_logic;
addr : in unsigned;
wrData : in std_logic_vector;
rdData : out std_logic_vector
s

end component;

--True dual port (2 readWrite port)
component Ram_2wrs is

generic(
wordCount : integer;
wordWidth : integer;
clockCrossing : boolean;
technology : string;
portA_readUnderWirite : string;
portA_addressWidth : integer;
portA_dataWidth : integer;
portA_maskWidth : integer;
portA_maskEnable : boolean;
portB_readUnderWirite : string;
portB_addressWidth : integer;
portB_dataWidth : integer;
portB_maskWidth : integer;
portB_maskEnable : boolean

s

port(
portA_clk : in std_logic;
portA_en : in std_logic;
portA_wr : in std_logic;
portA_mask : in std_logic_vector;
portA_addr : in unsigned;
portA_wrData : in std_logic_vector;
portA_rdData : out std_logic_vector;
portB_clk : in std_logic;
portB_en : in std_logic;
portB_wr : in std_logic;
portB_mask : in std_logic_vector;
portB_addr : in unsigned;
portB_wrData : in std_logic_vector;
portB_rdData : out std_logic_vector

s

end component;

As you can see, blackboxes have a technology parameter. To set it, you can use the setTechnology function on
the corresponding memory. There are currently 4 kinds of technologies possible:

8.2. RAM/ROM 109

SpinalHDL Documentation

e auto
e ramBlock
e distributedLut

* registerFile

110 Chapter 8. Sequential logic

CHAPTER
NINE

DESIGN ERRORS

9.1 Assignment overlap

9.1.1 Introduction

SpinalHDL will check that no signal assignment completely erases a previous one.

9.1.2 Example

The following code

class TopLevel extends Component {

val a = UInt(8 bits)

a = 42

a := 66 // Erase the a := 42 assignment
}

will throw the following error:

ASSIGNMENT OVERLAP completely the previous one of (toplevel/a : UInt[8 bits])

ek

Source file location of the a := 66 assignment via the stack trace

ek

A fix could be:

class TopLevel extends Component {
val a = UInt(8 bits)

a = 42
when(something) {
a := 66
}
}

But in the case when you really want to override the previous assignment (as there are times when overriding makes
sense), you can do the following:

class TopLevel extends Component {
val a = UInt(8 bits)

a = 42
a.allowOverride
a := 66

}

111

SpinalHDL Documentation

9.2 Clock crossing violation

9.2.1 Introduction

SpinalHDL will check that every register of your design only depends (through combinational logic paths) on
registers which use the same or a synchronous clock domain.

9.2.2 Example

The following code:

class TopLevel extends Component {
val clkA = ClockDomain.external('"clkA™)
val clkB = ClockDomain.external("clkB")

val regA = clkA(Reg(UInt(8 bits))) // PlayDev.scala:834

val regB = clkB(Reg(UInt(8 bits))) // PlayDev.scala:835
val tmp = regA + regA // PlayDev.scala:838
regB := tmp

}

will throw:

CLOCK CROSSING VIOLATION from (toplevel/regA : UInt[8 bits]) to (toplevel/regB : .
~UInt[8 bits]).
- Register declaration at

ek

Source file location of the toplevel/regA definition via the stack trace
- through
>>> (toplevel/regA : UInt[8 bits]) at ***(PlayDev.scala:834) >>>
>>> (toplevel/tmp : UInt[8 bits]) at ***(PlayDev.scala:838) >>>
>>> (toplevel/regB : UInt[8 bits]) at ***(PlayDev.scala:835) >>>

There are multiple possible fixes, listed below:
e crossClockDomain tags
o setSyncronousWith method

* BufferCC type

crossClockDomain tag

The crossClockDomain tag can be used to communicate “It’s alright, don’t panic about this specific clock cross-
ing” to the SpinalHDL compiler.

class TopLevel extends Component {
val clkA = ClockDomain.external ("clkA™)
val clkB = ClockDomain.external ("clkB")

clkA(Reg(UInt(8 bits)))
clkB(Reg(UInt(8 bits))).addTag(crossClockDomain)

val regA
val regB

val tmp = regA + regA

(continues on next page)

112 Chapter 9. Design errors

SpinalHDL Documentation

(continued from previous page)

regB := tmp

setSyncronousWith

You can also specify that two clock domains are synchronous together by using the setSynchronousWith method
of one of the ClockDomain objects.

class TopLevel extends Component {
val clkA = ClockDomain.external ("clkA™)
val clkB = ClockDomain.external("clkB")
clkB.setSyncronousWith(clkA)

val regA clkA(Reg(UInt(8 bits)))
val regB = clkB(Reg(UInt(8 bits)))

val tmp = regA + regA
regB := tmp

BufferCC

When exchanging single-bit signals (such as Bool types), or Gray-coded values, you can use BufferCC to safely
cross different ClockDomain regions.

Warning: Do not use BufferCC with multi-bit signals, as there is a risk of corrupted reads on the receiving
side if the clocks are asynchronous. See the Clock Domains page for more details.

class AsyncFifo extends Component {
val popToPushGray = Bits(ptrWidth bits)
val pushToPopGray = Bits(ptrWidth bits)

val pushCC = new ClockingArea(pushClock) {
val pushPtr = Counter(depth << 1)
val pushPtrGray RegNext (toGray(pushPtr.valueNext)) init(0)
val popPtrGray = BufferCC(popToPushGray, B(0, ptrWidth bits))
val full isFull (pushPtrGray, popPtrGray)

}

val popCC = new ClockingArea(popClock) {
val popPtr = Counter(depth << 1)
val popPtrGray = RegNext(toGray(popPtr.valueNext)) init(0)
val pushPtrGray = BufferCC(pushToPopGray, B(0, ptrWidth bit))
val empty isEmpty(popPtrGray, pushPtrGray)

9.2. Clock crossing violation 113

SpinalHDL Documentation

9.3 Combinatorial loop

9.3.1 Introduction

SpinalHDL will check that there are no combinatorial loops in the design.

9.3.2 Example

The following code:

class TopLevel extends Component {
val a = UInt(8 bits) // PlayDev.scala line 831
val b = UInt(8 bits) // PlayDev.scala line 832
val ¢ = UInt(8 bits)

val d = UInt(8 bits)
a:=b
b:=c | d
d := a
c =0
}
will throw :

COMBINATORIAL LOOP :
Partial chain :
>>> (toplevel/a : UInt[8 bits]) at ***(PlayDev.scala:831) >>>
>>> (toplevel/d : UInt[8 bits]) at ***(PlayDev.scala:834) >>>
>>> (toplevel/b : UInt[8 bits]) at ***(PlayDev.scala:832) >>>
>>> (toplevel/a : UInt[8 bits]) at ***(PlayDev.scala:831) >>>

Full chain :
(toplevel/a : UInt[8 bits])
(toplevel/d : UInt[8 bits])
(UInt | UInt)[8 bits]
(toplevel/b : UInt[8 bits])
(toplevel/a : UInt[8 bits])

A possible fix could be:

class TopLevel extends Component {
val a = UInt(8 bits) // PlayDev.scala line 831
val b = UInt(8 bits) // PlayDev.scala line 832
UInt(8 bits)
UInt(8 bits)

< <
IS
(==
an
no

a :=
b:=c | d
d.

C

114 Chapter 9.

Design errors

SpinalHDL Documentation

9.3.3 False-positives

It should be said that SpinalHDL's algorithm to detect combinatorial loops can be pessimistic, and it may give false
positives. If it is giving a false positive, you can manually disable loop checking on one signal of the loop like so:

class TopLevel extends Component {
val a = UInt(8 bits)

a =0

a(l) := a(0®) // False positive because of this line
}
could be fixed by :

class TopLevel extends Component {
val a = UInt(8 bits).noCombLoopCheck

a =0
a(l) := a(®
}
It should also be said that assignments such as (a(1) := a(®)) can make some tools like Verilator unhappy. It

may be better to use a Vec(Bool, 8) in this case.

9.4 Hierarchy violation

9.4.1 Introduction

SpinalHDL will check that signals are never accessed outside of the current component’s scope.
The following signals can be read inside a component:

¢ All directionless signals defined in the current component

* All in/out/inout signals of the current component

* All in/out/inout signals of child components
In addition, the following signals can be assigned to inside of a component:

 All directionless signals defined in the current component

* All out/inout signals of the current component

* All in/inout signals of child components

If a HIERARCHY VIOLATION error appears, it means that one of the above rules was violated.

9.4.2 Example

The following code:

class TopLevel extends Component {
val io = new Bundle {
val a = in UInt(8 bits)

}
val tmp = U"x42"
io.a := tmp

3

will throw:

9.4. Hierarchy violation 115

https://www.veripool.org/wiki/verilator

SpinalHDL Documentation

HIERARCHY VIOLATION : (toplevel/io_a : in UInt[8 bits]) is driven by (toplevel/tmp : .
—UInt[8 bits]), but isn't accessible in the toplevel component.

ek

Source file location of the “io.a := tmp via the stack trace
e

A fix could be :

class TopLevel extends Component {
val io = new Bundle {
val a = out UInt(8 bits) // changed from in to out

}
val tmp = U"x42"
io.a := tmp

}

9.5 lo bundle

9.5.1 Introduction

SpinalHDL will check that each io bundle contains only in/out/inout signals.

9.5.2 Example

The following code:

class TopLevel extends Component {
val io = new Bundle {
val a = UInt(8 bits)
}
}

will throw:

I0 BUNDLE ERROR : A direction less (toplevel/io_a : UInt[8 bits]) signal was defined.
—.into toplevel component's io bundle
EE

Source file location of the toplevel/io_a definition via the stack trace

ek

A fix could be:

class TopLevel extends Component {
val io = new Bundle {
val a = in UInt(8 bits)
}
}

But if for meta hardware description reasons you really want io.a to be directionless, you can do:

class TopLevel extends Component {
val io = new Bundle {
val a = UInt(8 bits)
}

(continues on next page)

116 Chapter 9. Design errors

SpinalHDL Documentation

(continued from previous page)

a.allowDirectionLessIo

}

9.6 Latch detected

9.6.1 Introduction

SpinalHDL will check that no combinational signals will infer a latch during synthesis. In other words, this is a

check that no combinational signals are partially assigned.

9.6.2 Example

The following code:

class TopLevel extends Component {

val cond = in(Bool)
val a = UInt(8 bits)

when(cond) {
a = 42
}
}

will throw:

LATCH DETECTED from the combinatorial signal (toplevel/a :

ehk

UInt[8 bits]), defined at

Source file location of the toplevel/io_a definition via the stack trace

ek

A fix could be:

class TopLevel extends Component {

val cond = in(Bool)
val a = UInt(8 bits)

a =0
when(cond) {
a = 42
}
}

9.7 No driver on

9.7.1 Introduction

SpinalHDL will check that all combinational signals which have an impact on the design are assigned by something.

9.6. Latch detected

117

SpinalHDL Documentation

9.7.2 Example

The following code:

class TopLevel extends Component {
val result = out(UInt(8 bits))
val a = UInt(8 bits)
result := a

}

will throw:

NO DRIVER ON (toplevel/a : UInt[8 bits]), defined at

ek

Source file location of the toplevel/a definition via the stack trace

ek

A fix could be:

class TopLevel extends Component {
val result = out(UInt(8 bits))
val a = UInt(8 bits)
a = 42
result := a

9.8 NullPointerException

9.8.1 Introduction

NullPointerException is a Scala runtime reported error which can happen when a variable is accessed before
it has been initialized.

9.8.2 Example

The following code:

class TopLevel extends Component {
a = 42
val a = UInt(8 bits)

3

will throw:

Exception in thread "main" java.lang.NullPointerException

ek

Source file location of the a := 42 assignment via the stack trace

ek

A fix could be:

class TopLevel extends Component {
val a = UInt(8 bits)
a = 42

118 Chapter 9. Design errors

SpinalHDL Documentation

Issue explanation
SpinalHDL is not a language, it is a Scala library, which means that it obeys the same rules as the Scala general
purpose programming language.

When running the above SpinalHDL hardware description to generate the corresponding VHDL/Verilog RTL,
the SpinalHDL hardware description will be executed as a Scala program, and a will be a null reference
until the program executes val a = UInt(8 bits), so trying to assign to it before then will result in a
NullPointerException.

9.9 Register defined as component input

9.9.1 Introduction
In SpinalHDL, you are not allowed to define a component that has a register as an input. The reasoning behind this
is to prevent surprises when the user tries to drive the inputs of child components with the registered signal. If a

registered input is desired, you will need to declare the unregistered input in the io bundle, and register the signal
in the body of the component.

9.9.2 Example

The following code :

class TopLevel extends Component {
val io = new Bundle {
val a = in(Reg(UInt(8 bits)))
}
}

will throw:

REGISTER DEFINED AS COMPONENT INPUT : (toplevel/io_a : in UInt[8 bits]) is defined as.
—»a registered input of the toplevel component, but isn't allowed.

ek

Source file location of the toplevel/io_a definition via the stack trace

JORORON

A fix could be :

class TopLevel extends Component {
val io = new Bundle {
val a = in UInt(8 bits)
}
}

If a registered a is required, it can be done like so:

class TopLevel extends Component {
val io = new Bundle {
val a = in UInt(8 bits)
}
val a = RegNext(io.a)

}

9.9. Register defined as component input 119

SpinalHDL Documentation

9.10 Scope violation

9.10.1 Introduction

SpinalHDL will check that there are no signals assigned outside the scope they are defined in. This error isn’t easy
to trigger as it requires some specific meta hardware description tricks.

9.10.2 Example

The following code:

class TopLevel extends Component {
val cond = Bool()

var tmp : UInt = null
when(cond) {
tmp = UInt(8 bits)
}
tmp := U"x42"
}

will throw:

SCOPE VIOLATION : (toplevel/tmp : UInt[8 bits]) is assigned outside its declaration.
-,scope at

ekl

Source file location of the tmp := U"x42" via the stack trace
EE

A fix could be:

class TopLevel extends Component {
val cond = Bool()

var tmp : UInt = UInt(8 bits)
when(cond) {

}
tmp := U"x42"

9.11 Spinal can’t clone class

9.11.1 Introduction

This error happens when SpinalHDL wants to create a new datatype instance via the cloneOf function but isn’t
able to do it. The reason for this is nearly always because it can’t retrieve the construction parameters of a Bundle.

120 Chapter 9. Design errors

SpinalHDL Documentation

9.11.2 Example

The following code:

// cloneOf(this) isn't able to retrieve the width value that was used to construct.,
witself
class RGB(width : Int) extends Bundle {
val r, g, b = UInt(width bits)
}

class TopLevel extends Component {

val tmp = Stream(new RGB(8)) // Stream requires the capability to cloneOf(new.
—~RGB(8))
}

will throw:

**%* Spinal can't clone class spinal.tester.PlayDevMessages$RGB datatype
**% You have two way to solve that :
#**%* Tn place to declare a "class Bundle(args){}", create a "case class Bundle(args){}"

* Or override by your self the bundle clone function
EE

Source file location of the RGB class definition via the stack trace

ek

A fix could be:

case class RGB(width : Int) extends Bundle {
val r, g, b = UInt(width bits)
}

class TopLevel extends Component {
val tmp = Stream(RGB(8))
}

9.12 Unassigned register

9.12.1 Introduction

SpinalHDL will check that all registers which impact the design have been assigned somewhere.

9.12.2 Example

The following code:

class TopLevel extends Component {
val result = out(UInt(8 bits))
val a = Reg(UInt(8 bits))
result := a

}

will throw:

UNASSIGNED REGISTER (toplevel/a : UInt[8 bits]), defined at

(continues on next page)

9.12. Unassigned register 121

SpinalHDL Documentation

(continued from previous page)

Source file location of the toplevel/a definition via the stack trace

ek

A fix could be:

class TopLevel extends Component {
val result = out(UInt(8 bits))
val a = Reg(UInt(8 bits))
a = 42
result := a

9.12.3 Register with only init

In some cases, because of the design parameterization, it could make sense to generate a register which has no
assignment but only an init statement.

class TopLevel extends Component {
val result = out(UInt(8 bits))
val a = Reg(UInt(8 bits)) init(42)

if(something)
a := somethingElse
result := a

will throw:

UNASSIGNED REGISTER (toplevel/a : UInt[8 bits]), defined at

k]

Source file location of the toplevel/a definition via the stack trace

ek

To fix it, you can ask SpinalHDL to transform the register into a combinational one if no assignment is present but
it has an init statement:

class TopLevel extends Component {
val result = out(UInt(8 bits))
val a = Reg(UInt(8 bits)).init(42).allowUnsetRegToAvoidLatch

if(something)
a := somethingElse
result := a

122 Chapter 9. Design errors

SpinalHDL Documentation

9.13 Unreachable is statement

9.13.1 Introduction

SpinalHDL will check to ensure that all is statements in a switch are reachable.

9.13.2 Example

The following code:

class TopLevel extends Component {
val sel = UInt(2 bits)
val result = UInt(4 bits)
switch(sel) {
is(®){ result := 4 }
is(1){ result := 6 }
is(2){ result := 8 }
is(3){ result := 9 }
2}

is(0){ result := // Duplicated is statement!

will throw:

UNREACHABLE IS STATEMENT in the switch statement at

ekl

Source file location of the is statement definition via the stack trace
fh®

A fix could be:

class TopLevel extends Component {

val sel = UInt(2 bits)

val result = UInt(4 bits)

switch(sel) {
is(®){ result :=
is(1){ result :=
is(2){ result :=
is(3){ result :=

O 0 O
S

9.14 Width mismatch

9.14.1 Introduction

SpinalHDL will check that operators and signals on the left and right side of assignments have the same widths.

9.13. Unreachable is statement 123

SpinalHDL Documentation

9.14.2 Assignment example

The following code:

class TopLevel extends Component {
val a = UInt(8 bits)
val b = UInt(4 bits)
b :=a

}

will throw:

WIDTH MISMATCH on (toplevel/b : UInt[4 bits]) := (toplevel/a :

ek

Source file location of the OR operator via the stack trace

ek

UInt[8 bits]) at

A fix could be:

class TopLevel extends Component {
val a = UInt(8 bits)
val b = UInt(4 bits)
b := a.resized

}

9.14.3 Operator example

The following code:

class TopLevel extends Component {
val a = UInt(8 bits)
val b = UInt(4 bits)
val result =a | b

}

will throw:

WIDTH MISMATCH on (UInt | UInt)[8 bits]

- Left operand : (toplevel/a : UInt[8 bits])

- Right operand : (toplevel/b : UInt[4 bits])
at

ek

Source file location of the OR operator via the stack trace
ek

A fix could be:

class TopLevel extends Component {
val a = UInt(8 bits)
val b = UInt(4 bits)
val result = a | (b.resized)

}

124

Chapter 9. Design errors

SpinalHDL Documentation

9.15 Introduction

The SpinalHDL compiler will perform many checks on your design to be sure that the generated VHDL/Verilog
will be safe for simulation and synthesis. Basically, it should not be possible to generate a broken VHDL/Verilog
design. Below is a non-exhaustive list of SpinalHDL checks:

Assignment overlapping
Clock crossing
Hierarchy violation
Combinatorial loops
Latches

Undriven signals

Width mismatch

Unreachable switch statements

On each SpinalHDL error report, you will find a stack trace, which can be useful to accurately find out where the
design error is. These design checks may look like overkill at first glance, but they becomes invaluable as soon as
you start to move away from the traditional way of doing hardware description.

9.15.

Introduction 125

SpinalHDL Documentation

126 Chapter 9. Design errors

CHAPTER

TEN

10.1 Utils

10.1.1 Gene

ral

OTHER LANGUAGE FEATURES

Many tools and utilities are present in spinal.lib but some are already present in the SpinalHDL Core.

Syntax Return Description

widthOf(x : BitVector) Int Return the width of a Bits/UInt/SInt signal

log2Up(x : BigInt) Int Return the number of bits needed to represent x states

isPow2(x : BigInt) Boolean Return true if x is a power of two

roundUp(that : BigInt, by : Biglnt Return the first by multiply from that (included)

BigInt)

Cat(x : Data¥®) Bits Concatenate all arguments, the first in MSB, the last
in LSB

10.1.2 Cloning hardware datatypes

You can clone a given hardware data type by using the cloneO£f (x) function. It will return a new instance of the
same Scala type and parameters.

For example:

def plusOne(value : UInt) : Ulnt = {
// Will recreate a UInt with the same width than “‘value™
val temp = cloneOf(value)
temp := value + 1
return temp

}

// treePlusOne will become a 8 bits value
val treePlusOne = plusOne(U(3, 8 bits))

You can get more information about how hardware data types are managed on the Hardware types page.

Note: If you use the cloneOf function on a Bundle, this Bundle should be a case class or should override
the clone function internally.

127

SpinalHDL Documentation

10.1.3 Passing a datatype as construction parameter

Many pieces of reusable hardware need to be parameterized by some data type. For example if you want to define
a FIFO or a shift register, you need a parameter to specify which kind of payload you want for the component.

There are two similar ways to do this.

The old way

A good example of the old way to do this is in this definition of a ShiftRegister component:

case class ShiftRegister[T <: Data](dataType: T, depth: Int) extends Component {
val io = new Bundle {
val input = in (cloneOf(dataType))
val output = out(cloneOf(dataType))
}
/) ..
}

And here is how you can instantiate the component:

val shiftReg = ShiftRegister(Bits(32 bits), depth = 8)

As you can see, the raw hardware type is directly passed as a construction parameter. Then each time you want
to create an new instance of that kind of hardware data type, you need to use the cloneOf(. ..) function. Doing
things this way is not super safe as it’s easy to forget to use cloneOf.

The safe way

An example of the safe way to pass a data type parameter is as follows:

case class ShiftRegister[T <: Data](dataType: HardType[T], depth: Int) extends.
—Component {
val io = new Bundle {
val input = in (dataType())
val output = out(dataType())
}
/) ...
}

And here is how you instantiate the component (exactly the same as before):

val shiftReg = ShiftRegister(Bits(32 bits), depth = 8)

Notice how the example above uses a HardType wrapper around the raw data type T, which is a “blueprint”
definition of a hardware data type. This way of doing things is easier to use than the “old way”, because to create
a new instance of the hardware data type you only need to call the apply function of that HardType (or in other
words, just add parentheses after the parameter).

Additionally, this mechanism is completely transparent from the point of view of the user, as a hardware data type
can be implicitly converted into a HardType.

128 Chapter 10. Other language features

SpinalHDL Documentation

10.1.4 Frequency and time

SpinalHDL has a dedicated syntax to define frequency and time values:

val frequency = 100 MHz
val timeoutLimit = 3 ms
val period = 100 us

val periodCycles = frequency * period
val timeoutCycles = frequency * timeoutLimit

For time definitions you can use following postfixes to get a TimeNumber:
fs, ps, ns, us, ms, sec, mn, hr

For time definitions you can use following postfixes to get a HertzNumber:
Hz, KHz, MHz, GHz, THz

TimeNumber and HertzNumber are based on the PhysicalNumber class which uses the Scala BigDecimal type
to store numbers.

10.2 Assertions

In addition to Scala run-time assertions, you can add hardware assertions using the following syntax:

assert(assertion : Bool, message : String = null, severity: AssertNodeSeverity =
Error)

Severity levels are:

Name Description

NOTE Used to report an informative message

WARNING Used to report an unusual case

ERROR Used to report an situation that should not happen
FAILURE Used to report a fatal situation and close the simulation

One practical example could be to check that the valid signal of a handshake protocol never drops when ready
is low:

class TopLevel extends Component {
val valid = RegInit(False)
val ready = in Bool

when(ready) {

valid := False
}
// some logic
assert(
assertion = !(valid.fall && !ready),
message = "Valid dropped when ready was low",
severity = ERROR
)

}

10.2. Assertions 129

SpinalHDL Documentation

10.3 Report

You can add debugging in RTL for simulation, using the following syntax:

object Enum extends SpinalEnum{
val MIAOU, RAWRR = newElement()
}

class TopLevel extends Component {
val a = Enum.RAWRRQ)
val b = U(0x42)
val ¢ = out(Enum.RAWRR(Q))
val d = out (U(0x42))
report(Seq("miaou ", a, b, c, d))

}

It will generate the following Verilog code for example:

$display("NOTE miaou %s%x%s%x", a_string, b, c_string, d);

Since SpinalHDL 1.4.4, the following syntax is also supported:

report(L"miaou $a $b $c $d")

10.4 Formal

10.4.1 General

There is limited support for SystemVerilog Assertions (SVA).

You can add formal statements (assume, assert, etc.) in the Component definition, like in the example below:

class TopLevel extends Component {
val io = new Bundle {
val ready = in Bool()
val valid = out Bool()

}
val valid = RegInit(False)

when(io.ready) {
valid := False

}

io.valid <> valid

// some logic

import spinal.core.GenerationFlags._
import spinal.core.Formal._

GenerationFlags.formal {
when(initstate()) {
assume (clockDomain.isResetActive)
assume(io.ready === False)
}.otherwise {
assert(!(valid.fall && !io.ready))
}

(continues on next page)

130 Chapter 10. Other language features

SpinalHDL Documentation

(continued from previous page)

To generate a design which includes the formal statements you can use includeFormal:

object MyToplevelSystemVerilogWithFormal {
def main(args: Array[String]) {
val config = SpinalConfig(defaultConfigForClockDomains =.
—.ClockDomainConfig(resetKind=SYNC, resetActiveLevel=HIGH))
config.includeFormal.generateSystemVerilog(new TopLevel())
}
}

10.4.2 Supported features

Syntax Returns Creates in SystemVerilog
assert() assert()
cover() cover()

T past(that)

past(that : T, delay : Int)
past(that : T)

rose(that : Bool) Bool rose(that)
fell(that : Bool) Bool fell(that)
changed(that : Bool) Bool changed(that)
stable(that : Bool) Bool stable(that)
initstate() Bool $initstate()

10.4.3 Limitations

No support for unclocked assertions. Everything that is described in GenerationFlags. formal will be generated
in a clocked process.

10.5 Analog and inout

10.5.1 Introduction

You can define native tristate signals by using the Analog/inout features. These features were added for the
following reasons:

» Being able to add native tristate signals to the toplevel (it avoids having to manually wrap them with some
hand-written VHDL/Verilog).

* Allowing the definition of blackboxes which contain inout pins.
* Being able to connect a blackbox’s inout pin through the hierarchy to a toplevel inout pin.
As those features were only added for convenience, please do not try other fancy stuff with tristate logic just yet.

If you want to model a component like a memory-mapped GPIO peripheral, please use the TriState/TriStateArray
bundles from the Spinal standard library, which abstract over the true nature of tristate drivers.

10.5. Analog and inout 131

SpinalHDL Documentation

10.5.2 Analog

Analog is the keyword which allows a signal to be defined as something analog, which in the digital world could
mean 0, 1, or Z (the disconnected, high-impedance state).

For instance:

case class SdramInterface(g : SdramLayout) extends Bundle {
val DQ Analog(Bits(g.dataWidth bits)) // Bidirectional data bus
val DQM Bits(g.bytePeriWord bits)
val ADDR = Bits(g.chipAddressWidth bits)
val BA = Bits(g.bankWidth bits)
val CKE, CSn, CASn, RASn, WEn = Bool

10.5.3 inout

inout is the keyword which allows you to set an Analog signal as a bidirectional (both “in” and “out”) signal.

For instance:

case class SdramInterface(g : SdramLayout) extends Bundle with IMasterSlave {
val DQ = Analog(Bits(g.dataWidth bits)) // Bidirectional data bus
val DQM Bits(g.bytePeriWord bits)
val ADDR Bits(g.chipAddressWidth bits)
val BA = Bits(g.bankWidth bits)
val CKE, CSn, CASn, RASn, WEn = Bool

override def asMaster() : Unit = {

out (ADDR, BA, CASn, CKE, CSn, DQM, RASn, WEn)

inout(DQ) // Set the Analog DQ as an inout signal of the component
}

}

10.5.4 InOutWrapper

InOutWrapper is a tool which allows you to transform allmaster TriState/TriStateArray/ReadableOpenDrain
bundles of a component into native inout (Analog(. . .)) signals. It allows you to keep your hardware description
free of any Analog/inout things, and then transform the toplevel to make it synthesis ready.

For instance:

case class Apb3Gpio(gpioWidth : Int) extends Component {
val io = new Bundle{
val gpio = master(TriStateArray(gpioWidth bits))
val apb = slave(Apb3(Apb3Gpio.getApb3Config()))
}

}

SpinalVhdl (InOutWrapper (Apb3Gpio(32)))

Will generate:

entity Apb3Gpio is
port(
io_gpio : inout std_logic_vector(31 downto 0); -- This io_gpio was originally a.

(continues on next page)

132 Chapter 10. Other language features

SpinalHDL Documentation

(continued from previous page)

—TriStateArray Bundle
io_apb_PADDR : in unsigned(3 downto 0);
io_apb_PSEL : in std_logic_vector(® downto 0);
io_apb_PENABLE : in std_logic;
io_apb_PREADY : out std_logic;
io_apb_PWRITE : in std_logic;
io_apb_PWDATA : in std_logic_vector(31 downto 0);
io_apb_PRDATA : out std_logic_vector(31 downto 0);
io_apb_PSLVERROR : out std_logic;
clk : in std_logic;
reset : in std_logic

s
end Apb3Gpio;

Instead of:

entity Apb3Gpio is
port(
io_gpio_read : in std_logic_vector(31 downto 0);
io_gpio_write : out std_logic_vector(31 downto 0);
io_gpio_writeEnable : out std_logic_vector(31 downto 0);
io_apb_PADDR : in unsigned(3 downto 0);
io_apb_PSEL : in std_logic_vector(® downto 0);
io_apb_PENABLE : in std_logic;
io_apb_PREADY : out std_logic;
io_apb_PWRITE : in std_logic;
io_apb_PWDATA : in std_logic_vector(31 downto 0);
io_apb_PRDATA : out std_logic_vector(31 downto 0);
io_apb_PSLVERROR : out std_logic;
clk : in std_logic;
reset : in std_logic
s
end Apb3Gpio;

10.5.5 Manually driving Analog bundles

If an Analog bundle is not driven, it will default to being high-Z. Therefore to manually implement a tristate driver
(in case the InOutWrapper type can’t be used for some reason) you have to conditionally drive the signal.

To manually connect a TriState signal to an Analog bundle:

case class Example extends Component {
val io = new Bundle {
val tri = slave(TriState(Bits(16 bit)))
val analog = inout Analog(Bits(16 bit))

}
tri.read := analog
when(tri.writeEnable) { analog := tri.write }

10.5. Analog and inout 133

SpinalHDL Documentation

10.6 VHDL and Verilog generation

10.6.1 Generate VHDL and Verilog from a SpinalHDL Component

To generate the VHDL from a SpinalHDL component you just need to call SpinalVhdl (new YourComponent)
in a Scala main.

Generating Verilog is exactly the same, but with SpinalVerilog in place of SpinalVHDL

import spinal.core._

// A simple component definition.
class MyTopLevel extends Component {
// Define some input/output signals. Bundle like a VHDL record or a Verilog struct.
val io = new Bundle {
val a = in Bool()
val b in Bool()
val ¢ = out Bool()

}

// Define some asynchronous logic.
io.c := io.a & io.b

}

// This is the main function that generates the VHDL and the Verilog corresponding to..
—MyTopLevel.
object MyMain {
def main(args: Array[String]) {
SpinalVhdl (new MyTopLevel)
SpinalVerilog(new MyTopLevel)
}
3

Important: SpinalVhdl and SpinalVerilog may need to create multiple instances of your component class,
therefore the first argument is not a Component reference, but a function that returns a new component.

Important: The SpinalVerilog implementation began the Sth of June, 2016. This backend successfully passes
the same regression tests as the VHDL one (RISCV CPU, Multicore and pipelined mandelbrot, UART RX/TX,
Single clock fifo, Dual clock fifo, Gray counter, ...).

If you have any issues with this new backend, please make a Github issue describing the problem.

134 Chapter 10. Other language features

https://github.com/SpinalHDL/SpinalHDL/issues

SpinalHDL Documentation

Parametrization from Scala

Argument | Type Default Description
name
mode SpinalMode| null

Set the SpinalHDL hdl generation mode.
Can be set to VHDL or Verilog

defaul tConfThiaid-ockDomains Set the clock configuration that will be used as the default value for
mainCon- all new ClockDomain.
fig RisingEdgeClock
AsynchrononisReset
ResetActiveHigh

ClockEnableActiveHigh

onlyStdLogiB¥elcharAtTdplsevelIo | Change all unsigned/signed toplevel io into std_logic_vector.
defaul tClocKDionkboFreqUekapwn- | Default clock frequency.

mainFre- Frequency
quency
targetDirecSwing Current di- | Directory where files are generated.
rectory

And this is the syntax to specify them:

SpinalConfig(mode=VHDL, targetDirectory="temp/myDesign").generate(new UartCtrl)

// Or for Verilog in a more scalable formatting:
SpinalConfig(

mode=Verilog,

targetDirectory=""temp/myDesign"
) .generate(new UartCtrl)

Parametrization from shell

You can also specify generation parameters by using command line arguments.

def main(args: Array[String]): Unit = {
SpinalConfig.shell(args) (new UartCtrl)
}

The syntax for command line arguments is:

Usage: SpinalCore [options]

--vhdl
Select the VHDL mode
--verilog
Select the Verilog mode
-d | --debug
Enter in debug mode directly
-0 <value> | --targetDirectory <value>
Set the target directory

10.6. VHDL and Verilog generation 135

SpinalHDL Documentation

10.6.2 Generated VHDL and Verilog

How a SpinalHDL RTL description is translated into VHDL and Verilog is important:

* Names in Scala are preserved in VHDL and Verilog.
* Component hierarchy in Scala is preserved in VHDL and Verilog.

* when statements in Scala are emitted as if statements in VHDL and Verilog.

» switch statements in Scala are emitted as case statements in VHDL and Verilog in all standard cases.

Organization

When you use the VHDL generator, all modules are generated into a single file which contain three sections:

1. A package that contains the definition of all Enums
2. A package that contains functions used by the architectural elements

3. All components needed by your design

When you use the Verilog generation, all modules are generated into a single file which contains two sections:

1. All enumeration definitions used

2. All modules needed by your design

Combinational logic

Scala:

class TopLevel extends Component {
val io = new Bundle {

val cond = in Bool(Q)
val value = in UInt(4 bits)
val withoutProcess = out UInt(4 bits)
val withProcess = out UInt(4 bits)
}
io.withoutProcess := io.value
io.withProcess := 0

when(io.cond) {
switch(io.value) {
is(U"0000") {

io.withProcess := 8
}
is(U"0001") {
io.withProcess := 9
}
default {
io.withProcess := io.value+l
}
}
}
}
VHDL.:

entity TopLevel is
port(
io_cond : in std_logic;

(continues on next page)

136 Chapter 10.

Other language features

SpinalHDL Documentation

(continued from previous page)

io_value : in unsigned(3 downto 0);
io_withoutProcess : out unsigned(3 downto 0);
io_withProcess : out unsigned(3 downto 0)
s
end TopLevel;

architecture arch of TopLevel is
begin
io_withoutProcess <= io_value;
process(io_cond,io_value)

begin
io_withProcess <= pkg_unsigned("0000");
if io_cond = '1' then

case io_value is
when pkg_unsigned("0000") =>
io_withProcess <= pkg_unsigned("1000");
when pkg_unsigned("0001") =>
io_withProcess <= pkg_unsigned("1001");
when others =>
io_withProcess <= (io_value + pkg_unsigned("0001"));
end case;
end if;
end process;
end arch;

Sequential logic

Scala:

class TopLevel extends Component {
val io = new Bundle {
val cond = in Bool()
val value = in UInt (4 bit)
val resultA = out UInt(4 bit)
val resultB = out UInt(4 bit)
}

val regWithReset = Reg(UInt(4 bits)) init(0)
val regWithoutReset = Reg(UInt(4 bits))

regWithReset := io.value
regWithoutReset := 0
when(io.cond) {

regWithoutReset := io.value
}
io.resultA := regWithReset
io.resultB := regWithoutReset
}
VHDL.:

entity TopLevel is
port(
io_cond : in std_logic;

(continues on next page)

10.6. VHDL and Verilog generation 137

SpinalHDL Documentation

(continued from previous page)

io_value : in unsigned(3 downto 0);
io_resultA : out unsigned(3 downto 0);
io_resultB : out unsigned(3 downto 0);
clk : in std_logic;
reset : in std_logic
s
end TopLevel;

architecture arch of TopLevel is

signal regWithReset : unsigned(3 downto 0);
signal regWithoutReset : unsigned(3 downto 0);
begin
io_resultA <= regWithReset;
io_resultB <= regWithoutReset;
process(clk,reset)
begin
if reset = '1' then
regWithReset <= pkg_unsigned("0000");
elsif rising_edge(clk) then
regWithReset <= io_value;
end if;
end process;

process(clk)
begin
if rising_edge(clk) then
regWithoutReset <= pkg_unsigned("0000");

if io_cond = '1' then
regWWithoutReset <= io_value;
end if;
end if;
end process;
end arch;

10.6.3 VHDL and Verilog attributes

In some situations, it is useful to give attributes for some signals in a design to modify how they are synthesized.

To do that, you can call the following functions on any signals or memories in the design:

Syntax Description

addAttribute (name) Add a boolean attribute with the given name set to true

addAttribute(name, value) Add a string attribute with the given name set to value
Example:

val pcPlus4 = pc + 4
pcPlus4.addAttribute("keep™)

Produced declaration in VHDL:

attribute keep : boolean;
signal pcPlus4 : unsigned(31 downto 0);
attribute keep of pcPlus4: signal is true;

138

Chapter 10. Other language features

SpinalHDL Documentation

Produced declaration in Verilog:

(* keep *) wire [31:0] pcPlus4;

10.7 Introduction

10.7.1 Introduction

The core of the language defines the syntax for many features:
 Types / Literals
* Register / Clock domains
* Component / Area
* RAM/ROM
* When / Switch / Mux
* BlackBox (to integrate VHDL or Verilog IPs inside Spinal)
» SpinalHDL to VHDL converter

Then, by using these features, you can define digital hardware, and also build powerful libraries and abstractions.
It’s one of the major advantages of SpinalHDL over other commonly used HDLs, because you can extend the
language without having knowledge about the compiler.

One good example of this is the SpinalHDL [ib which adds many utilities, tools, buses, and methodologies.

To use features introduced in the following chapter you need to import spinal.core._ in your sources.

10.7. Introduction 139

SpinalHDL Documentation

140 Chapter 10. Other language features

CHAPTER
ELEVEN

LIBRARIES

11.1 Utils

Some utils are also present in spinal.core

141

SpinalHDL Documentation

11.1.1 State less utilities

Syntax Return Description
toGray(x : Ulnt) Bits Return the gray value converted from x (Ulnt)
fromGray(x : Bits) Ulnt Return the Ulnt value converted value from x (gray)
Reverse(x : T) T Flip all bits (Isb + n -> msb - n)
Ulnt Return the index of the single bit set (one hot) in x
OHToUlnt(x :
Seq[Bool])
OHToUlnt(x :
BitVector)
Ulnt Return the number of bit set in x
CountOne(x :
Seq[Bool])
CountOne(x : BitVector)
Bool Return True if the number of bit set is > x.size / 2
Majority Vote(x :
Seq[Bool])
Majority Vote(x :
BitVector)
EndiannessSwap(that: T Big-Endian <-> Little-Endian
T[, base:BitCount])
OHMasking.first(x Bits Apply a mask on x to only keep the first bit set
Bits)
OHMasking.last(x Bits Apply a mask on x to only keep the last bit set
Bits)
Bits
OHMasking roundRobin(Apply a mask on x to only keep the bit set from requests.
s it start looking in requests from the ohPriority position.
requests : Bits,
L For example if requests is “1001” and ohPriority is “0010”,
ohPriority : Bits . . . L .
the roundRobin function will start looking in requests from its
) second bit and will return “1000”.
T Returns the muxed T from the inputs based on the oneHot vector.
MuxOH (
oneHot :
IndexedSeq[Bool],
inputs :
Iterable[T]
)
142 Chapter 11. Libraries

http://spinalhdl.github.io/SpinalHDL/#spinal.lib.MuxOH\protect \T1\textdollar

SpinalHDL Documentation

11.1.2 State full utilities

Syntax Return Description

Delay(that: T, cycleCount: Int) T Return that delayed by cycleCount cycles
History(that: T, length: Int[,when : | List[T]

Bool])

Return a Vec of 1length elements

The first element is that, the last one is that delayed by
length-1

The internal shift register sample when when is asserted

BufferCC(input : T) T Return the input signal synchronized with the current clock
domain by using 2 flip flop

Counter

The Counter tool can be used to easily instanciate an hardware counter.

Instanciation syntax Notes

Counter(start: Biglnt, end: BiglInt[, inc : Bool])

Counter(range : Range[, inc : Bool]) Compatible with the x to y x until y syntaxes
Counter(stateCount: Biglnt[, inc : Bool]) Start at zero and finish at stateCount - 1
Counter(bitCount: BitCount[, inc : Bool]) Start at zero and finish at (1 << bitCount) - 1

There is an example of different syntaxes which could be used with the Counter tool

val counter = Counter(2 to 9) //Create a counter of 10 states (2 to 9)

counter.clear() //When called it ask to reset the counter.
counter.increment() //When called it ask to increment the counter.
counter.value //current value

counter.valueNext //Next value

counter.willOverflow //Flag that indicate if the counter overflow this cycle

counter.willOverflowIfInc //Flag that indicate if the counter overflow this cycle if_
—-an increment is done
when(counter === 5){ ... }

When a Counter overflow its end value, it restart to its start value.

Note: Currently, only up counter are supported.

Timeout

The Timeout tool can be used to easily instanciate an hardware timeout.

Instanciation syntax Notes

Timeout(cycles : Biglnt) Tick after cycles clocks
Timeout(time : TimeNumber) Tick after a time duration
Timeout(frequency : HertzNumber) Tick at an frequency rate

There is an example of different syntaxes which could be used with the Counter tool

11.1. Utils 143

SpinalHDL Documentation

val timeout = Timeout(1® ms) //Timeout who tick after 10 ms
when(timeout) { //Check if the timeout has tick
timeout.clear() //Ask the timeout to clear its flag

}

Note: If you instanciate an Timeout with an time or frequency setup, the implicit ClockDomain should have an
frequency setting.

ResetCtrl
The ResetCtrl provide some utilities to manage resets.
asyncAssertSyncDeassert

You can filter an asynchronous reset by using an asynchronously asserted synchronously deaserted logic. To do it
you can use the ResetCtrl.asyncAssertSyncDeassert function which will return you the filtred value.

Argument Type Description

name

input Bool Signal that should be filtered

clockDomain ClockDomain ClockDomain which will use the filtered value

inputPolarity Polarity HIGH/LOW (default=HIGH)

outputPolarity Polarity HIGH/LOW (default=clockDomain.config.resetActiveLevel)
bufferDepth Int Number of register stages used to avoid metastability (default=2)

There is also an ResetCtrl.asyncAssertSyncDeassertDrive version of tool which directly assign the
clockDomain reset with the filtred value.

11.1.3 Special utilities

Syntax Return Description
LatencyAnalysis(paths : Node*) Int

Return the shortest path,in therm of cycle, that travel
through all nodes,

from the first one to the last one

11.2 Stream

11.2.1 Specification

The Stream interface is a simple handshake protocol to carry payload.
It could be used for example to push and pop elements into a FIFO, send requests to a UART controller, etc.

144 Chapter 11. Libraries

SpinalHDL Documentation

Sig- | Type | Driver Description Don’t

nal care
when

valid | Bool | Mas- | When high => payload present on the interface

ter

ready | Bool | Slave | When low => transaction are not consumed by the slave valid
is
low

pay- | T Mas- | Content of the transaction valid

load ter is
low

vaid [T\ | _/—_
eedy 7 O | Ol
payload ° 3 %(DO W%(D1: W%(D2 X D3 W

There is some examples of usage in SpinalHDL :

class StreamFifo[T <: Data](dataType: T, depth: Int) extends Component {
val io = new Bundle {
val push = slave Stream (dataType)
val pop = master Stream (dataType)
}

}

class StreamArbiter[T <: Data](dataType: T,portCount: Int) extends Component {
val io = new Bundle {
val inputs = Vec(slave Stream (dataType),portCount)
val output = master Stream (dataType)

}

Note: Each slave can or can’t allow the payload to change when valid is high and ready is low. For examples:

* An priority arbiter without lock logic can switch from one input to the other (which will change the payload).

e An UART controller could directly use the write port to drive UART pins and only consume the transaction
at the end of the transmission. Be careful with that.

11.2. Stream 145

SpinalHDL Documentation

11.2.2 Semantics

When manually reading/driving the signals of a Stream keep in mind that:

* After being asserted, valid may only be deasserted once the current payload was acknowleged. This means
valid can only toggle to O the cycle after a the slave did a read by asserting ready.

* In contrast to that ready may change at any time.
* A transfer is only done on cycles where both valid and ready are asserted.

e valid of a Stream must not depend on ready in a combinatorial way and any path between the two must
be registered.

e Itis recommended that valid does not depend on ready at all.

146 Chapter 11. Libraries

SpinalHDL Documentation

11.2. Stream 147

SpinalHDL Documentation

11.2.3 Functions

Syntax Description Re- La-
turn tency
Stream(type : Data) Create a Stream of a given type Stream|[[T]
master/slave Stream(type : Data) Stream|[[T]
Create a Stream of a given type
Initialized with corresponding in/out setup
x.fire Return True when a transaction is consumed | Bool
on the bus (valid && ready)
x.isStall Return True when a transaction is stall on the | Bool
bus (valid && ! ready)
X.queue(size:Int) Return a Stream connected to X through a | Stream[[T?
FIFO
Stream|[[T1]
x.m2sPipe() Return a Stream drived by x
x.stage() through a register stage that cut
valid/payload paths
Cost = (payload width + 1) flop flop
x.s2mPipe() Stream|[[T(
Return a Stream drived by x
ready paths is cut by a register stage
Cost = payload width * (mux2 + 1 flip flop)
x.halfPipe() Stream|[[T]
Return a Stream drived by x
valid/ready/payload paths are cut by some
register
Cost = (payload width + 2) flip flop,
bandwidth divided by two
Connect y to x 0
X <<y
y>>X
Connect y to x through a m2sPipe 1
X <-<y
y >-> X
Connect y to x through a s2mPipe 0
X </<y
y >/>x
1
X <-I<y Connect y to x through
y >/-> X s2mPipe().m2sPipe()
Which imply no combinatorial path
between x and y
x.haltWhen(cond : Bool) Stream|[[T]
148 Return a Stream connected to x Chapter 11. Libraries
Halted when cond is true
x.throwWhen(cond : Bool) Stream|[[T()

SpinalHDL Documentation

The following code will create this logic :

source.throwWhen(source.payload.isBlack)

Sink <-< ...

source

5

(=3

T
2
gi

IsBlac
A

IR

case class RGB(channelWidth : Int) extends Bundle{
val red = UInt(channelWidth bit)
val green = UInt(channelWidth bit)
val blue = UInt(channelWidth bit)

def isBlack : Bool = red === 0 && green === 0 &% blue ===
}

val source = Stream(RGB(8))
val sink = Stream(RGB(8))
sink <-< source.throwWhen(source.payload.isBlack)

11.2.4 Utils

There is many utils that you can use in your design in conjunction with the Stream bus, this chapter will document
them.

StreamFifo

On each stream you can call the .queue(size) to get a buffered stream. But you can also instantiate the FIFO
component itself :

val streamA,streamB = Stream(Bits(8 bits))
Y/
val myFifo = StreamFifo(

dataType = Bits(8 bits),

depth 128

)
myFifo.io.push << streamA
myFifo.io.pop >> streamB

11.2. Stream 149

SpinalHDL Documentation

parameter name Type Description

dataType T Payload data type

depth Int Size of the memory used to store elements
io Type Description

name

push Stream[T] Used to push elements

pop Stream[T] Used to pop elements

flush Bool Used to remove all elements inside the FIFO
occu- Ulnt of log2Up(depth + 1) bits Indicate the internal memory occupancy
pancy

StreamFifoCC

You can instanciate the dual clock domain version of the fifo the following way :

val clockA = ClockDomain(???)
val clockB = ClockDomain(?77)

val streamA,streamB = Stream(Bits(8 bits))

Y/

val myFifo = StreamFifoCC(
dataType = Bits(8 bits),

depth = 128,

pushClock = clockA,

popClock = clockB
)

myFifo.io.push << streamA
myFifo.io.pop >> streamB

parameter name Type Description
dataType T Payload data type
depth Int Size of the memory used to store elements
pushClock ClockDomain Clock domain used by the push side
popClock ClockDomain Clock domain used by the pop side
io Type Description
name
push Stream|[T] Used to push elements
pop Stream[T] Used to pop elements
pushOc- | Ulnt of log2Up(depth + 1) bits Indicate the internal memory occupancy (from the
cu- push side perspective)
pancy
popOc- | Ulnt of log2Up(depth + 1) bits Indicate the internal memory occupancy (from the pop
cu- side perspective)
pancy
150 Chapter 11. Libraries

SpinalHDL Documentation

StreamCCByToggle

Component that connects Streams across clock domains based on toggling signals.

This way of implementing a cross clock domain bridge is characterized by a small area usage but also a low
bandwidth.

val clockA = ClockDomain(???)
val clockB = ClockDomain(?77)
val streamA,streamB = Stream(Bits(8 bits))
S/
val bridge = StreamCCByToggle(

dataType = Bits(8 bits),

inputClock = clockA,

outputClock = clockB
)
bridge.io.input << streamA
bridge.io.output >> streamB

parameter name Type Description

dataType T Payload data type

inputClock ClockDomain Clock domain used by the push side
outputClock ClockDomain Clock domain used by the pop side
i0 name Type Description

input Stream|[T] Used to push elements

output Stream|[T] Used to pop elements

Alternatively you can also use a this shorter syntax which directly return you the cross clocked stream:

val clockA = ClockDomain(?77)
val clockB = ClockDomain(?77)
val streamA = Stream(Bits(8 bits))

val streamB = StreamCCByToggle(
input = streamA,
inputClock = clockA,

outputClock = clockB
)

StreamArbiter

When you have multiple Streams and you want to arbitrate them to drive a single one, you can use the StreamAr-
biterFactory.

val streamA, streamB, streamC = Stream(Bits(8 bits))
val arbitredABC = StreamArbiterFactory.roundRobin.onArgs(streamA, streamB, streamC)

val streamD, streamE, streamF = Stream(Bits(8 bits))
val arbitredDEF = StreamArbiterFactory.lowerFirst.noLock.onArgs(streamD, streamE,.
—streamF)

11.2. Stream 151

SpinalHDL Documentation

Arbitration Description
functions
lowerFirst Lower port have priority over higher port
roundRobin Fair round robin arbitration
sequen-
tialOrder Could be used to retrieve transaction in a sequancial order
First transaction should come from port zero, then from port one, ...

Lock func- | Description

tions

noLock The port selection could change every cycle, even if the transaction on the selected port is
not consumed.

transaction- The port selection is locked until the transaction on the selected port is consumed.

Lock

fragmentLock
Could be used to arbitrate Stream[Flow[T]].
In this mode, the port selection is locked until the selected port finish is burst (last=True).

Generation functions Return

on(inputs : Seq[Stream[T]]) Stream|[T]

onArgs(inputs : Stream[T]*) Stream|[T]

StreamJoin

This utile takes multiple input streams and wait until all of them fire before letting all of them through.

val cmdJoin = Stream(Cmd())
cmdJoin.arbitrationFrom(StreamJoin.arg(cmdABuffer, cmdBBuffer))

StreamFork

A StreamFork will clone each incoming data to all its output streams. If synchronous is true, all output streams
will always fire together, which means that the stream will halt until all output streams are ready. If synchronous is
false, output streams may be ready one at a time, at the cost of an additional flip flop (1 bit per output). The input
stream will block until all output streams have processed each item regardlessly.

val inputStream = Stream(Bits(8 bits))
val (outputstreaml, outputstream2) = StreamFork2(inputStream, synchronous=false)

or

val inputStream = Stream(Bits(8 bits))
val outputStreams = StreamFork(inputStream,portCount=2, synchronous=true)

152 Chapter 11. Libraries

SpinalHDL Documentation

StreamDispatcherSequencial

This util take its input stream and routes it to outputCount stream in a sequential order.

val inputStream = Stream(Bits(8 bits))

val dispatchedStreams = StreamDispatcherSequencial(
input = inputStream,
outputCount = 3

)

11.3 Flow

11.3.1 Specification

The Flow interface is a simple valid/payload protocol which mean the slave can’t halt the bus.
It could be used, for example, to represent data coming from an UART controller, requests to write an on-chip
memory, etc.

Sig- | Type | Driver Description Don’t
nal care
when
valid | Bool | Mas- | When high => payload present on the interface
ter
pay- | T Mas- | Content of the transaction valid
load ter is

low

11.3. Flow 153

SpinalHDL Documentation

11.3.2 Functions

Syn- | Description Re- La-
tax turn tency
Flow(typ€reate a Flow of a given type Flow[T]
Data)
mas- Flow[T]
ter/slave)
Flow(ty pgreate a Flow of a given type
: Initialized with corresponding in/out setup
Data)
x.m2sRipe() Flow[T] 1
Return a Flow drived by x
through a register stage that cut valid/payload paths
Connect y to x 0
X <<
y
y >>
X
Connect y to x through a m2sPipe 1
X <-<
y
y >->
X
x.throwWhen(cond Flow[T]] 0
; Return a Flow connected to x
Bool)
When cond is high, transaction are dropped
x.toReg(Return a register which is loaded with payload when valid is high T

11.4 Fragment

11.4.1 Specification
The Fragment bundle is the concept of transmitting a “big” thing by using multiple “small” fragments. For
examples :

* A picture transmitted with width*height transaction on a Stream[Fragment [Pixel]]

* An UART packet received from an controller without flow control could be transmitted on a
Flow[Fragment [Bits]]

* An AXI read burst could be carried by an Stream[Fragment [AxiReadResponse]]

Signals defined by the Fragment bundle are :

Signal Type Driver Description
fragment T Master The “payload” of the current transaction
last Bool Master High when the fragment is the last of the current packet

154 Chapter 11. Libraries

SpinalHDL Documentation

As you can see with this specification and precedent example, the Fragment concept doesn’t specify how trans-
action are transmitted (You can use Stream,Flow or any other communication protocol). It only add enough in-
formation (last) to know if the current transaction is the first one, the last one or one in the middle of a given

packet.

Note: The protocol didn’t carry a 'first' bit because it can be generated at any place by doing 'RegNex-

tWhen(bus.last, bus.fire) init(True)'

11.4.2 Functions

For Stream[Fragment [T]] and Flow[Fragment [T]], following function are presents :

Syn-Ret Description
tax| turm

x.firsBool Return True when the next or the current transaction is/would be the first of a packet

x.tdilBool Return True when the next or the current transaction is/would be not the first of a packet

x.isFiBstol Return True when an transaction is present and is the first of a packet

x.isTBboelReturn True when an transaction is present and is the not the first/last of a packet

x.isLBwol Return True when an transaction is present and is the last of a packet

For Stream[Fragment [T]], following function are also accessible :

Syntax

Return

Description

x.insertHeader(header : T)

Stream[Fragment[T]]

Add the header to each packet on

x and return the resulting bus

11.5 State machine

11.5.1 Introduction

In SpinalHDL you can define your state machine like in VHDL/Verilog, by using enumerations and switch cases

statements. But in SpinalHDL you can also use a dedicated syntax.

The following state machine is implemented in following examples :

11.5. State machine

155

SpinalHDL Documentation

counter =0

i whenlsActive =>
counter := counter + 1

i onExit => :
4 ioresult ;= True :

stateB -

counter === 4

Style A :

import spinal.lib.fsm._

class TopLevel extends Component {
val io = new Bundle{
val result = out Bool()

}

val fsm = new StateMachine{
val counter = Reg(UInt(8 bits)) init (0)
io.result := False

val stateA : State = new State with EntryPoint{
whenIsActive (goto(stateB))

}
val stateB : State = new State{
onEntry(counter := 0)
whenIsActive {
counter := counter + 1
when(counter === 4){
goto(stateC)
}
}
onExit(io.result := True)
}

val stateC : State = new State{
whenIsActive (goto(stateA))
}
}
}

Style B :

import spinal.lib.fsm._

class TopLevel extends Component {

(continues on next page)

156 Chapter 11. Libraries

SpinalHDL Documentation

(continued from previous page)

val io = new Bundle{
val result = out Bool()

}

val fsm = new StateMachine{
val stateA = new State with EntryPoint
val stateB = new State
val stateC = new State

val counter = Reg(UInt(8 bits)) init (0)

io.result := False

stateA
.whenIsActive (goto(stateB))

stateB
.onEntry(counter := 0)
.whenIsActive {
counter := counter + 1
when(counter === 4){
goto(stateC)
}
}
.onExit(io.result := True)
stateC

.whenIsActive (goto(stateA))

11.5.2 StateMachine

StateMachine is the base class that will manage the logic of your FSM.

val myFsm = new StateMachine{
// Here will come states definition

}

The StateMachine class also provide some utils :

Name Return Description

isAc- Bool Return True when the state machine is in the given state
tive(state)

isEnter- Bool Return True when the state machine is entering the given state
ing(state)

11.5. State machine

157

SpinalHDL Documentation

11.5.3 States

There is multiple kinds of states that you can use.
¢ State (the base one)
* StateDelay
* StateFsm
* StateParalle]Fsm

In each of them you have access the following utilities :

Name | Description

yourStatements is executed the cycle before entering the state

onEntry

yourStatements

yourStatements is executed when the state machine will be in another state the next cycle

onEXxit{

yourStatements

yourStatements is executed when the state machine is in the state

whenlIsActive{

yourStatements

yourStatements is executed when the state machine will be in the state the next cycle

whenlIsNext{

yourStatements

}

goto(nextSSatethe state of the state machine by nextState

exit() Set the state of the state machine to the boot one

For example, the following state could be defined in SpinalHDL by using the following syntax :

stateB) |

OnEntry => |
i counter:=0

whenlsActive =>

counter ===
counter ;= counter + 1
i AR
H it = [
: ONEXit => i sstateC)
i io.result :=True A .
R ~ .

- -

158 Chapter 11.

Libraries

SpinalHDL Documentation

val stateB : State = new State{
onEntry(counter := 0)
whenIsActive {
counter := counter + 1
when(counter === 4){
goto(stateC)
}
}
onExit(io.result := True)

}

You can also define your state as the entry point of the state machine by extends the EntryPoint trait.

val stateA: State = new State with EntryPoint {
whenIsActive {
goto(stateB)
}
}

StateDelay

StateDelay allow you to create a state which wait a fixed number of cycles before executing statments in your
whenCompleted{...}. The standard way to write it is :

val stateG : State = new StateDelay(cyclesCount=40) {
whenCompleted{
goto(stateH)
}
}

But you can also write it like that :

val stateG : State = new StateDelay(40){whenCompleted(goto(stateH))}

StateFsm

StateFsm Allow you to describe a state which contains a nested state machine. When the nested state machine is
done, your statments in whenCompleted{. ..} are executed.

There is an example of StateFsm definition :

val stateC = new StateFsm(fsm=internalFsm()){
whenCompleted{
goto(stateD)
}
}

As you can see in the precedent code, it use a internalFsm function to create the inner state machine. There is
an example of definition bellow :

def internalFsm() = new StateMachine {
val counter = Reg(UInt(8 bits)) init (0)

val stateA: State = new State with EntryPoint {
whenIsActive {
goto(stateB)

(continues on next page)

11.5. State machine 159

SpinalHDL Documentation

(continued from previous page)

}
}
val stateB: State = new State {
onEntry (counter := 0)
whenIsActive {
when(counter === 4) {
exit()
}
counter := counter + 1
}
}
}

In the precedent example, the exit () call will make the state machine jump to the boot state (a internal hidden
state). This notify the StateFsm about the completion of the inner state machine.

StateParallelFsm

This state is able to handle multiple nested state machines. When all nested state machine are done, your statments
in whenCompleted{. ..} are executed.

There is an example of declaration :

val stateD = new StateParallelFsm (internalFsmA(), internalFsmB()){
whenCompleted{
goto(stateE)
}
}

11.6 VexRiscv (RV32IM CPU)

VexRiscv is an fpga friendly RISC-V ISA CPU implementation with following features :
* RV32IM instruction set
* Pipelined on 5 stages (Fetch, Decode, Execute, Memory, WriteBack)
* 1.44 DMIPS/Mhz when all features are enabled
* Optimized for FPGA
¢ Optional MUL/DIV extension
» Optional instruction and data caches
* Optional MMU
* Optional debug extension allowing eclipse debugging via an GDB >> openOCD >> JTAG connection

* Optional interrupts and exception handling with the Machine and the User mode from the riscv-privileged-
v1.9.1 spec.

* Two implementation of shift instructions, Single cycle / shiftNumber cycles
» Each stage could have bypass or interlock hazard logic
* FreeRTOS port https://github.com/Dolul1990/FreeRTOS-RISCV

Much more information there : https://github.com/SpinalHDL/VexRiscv

160 Chapter 11. Libraries

https://github.com/Dolu1990/FreeRTOS-RISCV
https://github.com/SpinalHDL/VexRiscv

SpinalHDL Documentation

11.7 Bus Slave Factory

11.7.1 Introduction
In many situation it’s needed to implement a bus register bank. The BusSlaveFactory is a tool that provide an
abstract and smooth way to define them.

To see capabilities of the tool, an simple example use the Apb3SlaveFactory variation to implement an memory
mapped UART . There is also another example with an 7imer which contain a memory mapping function.

You can find more documentation about the internal implementation of the BusSlaveFactory tool there

11.7.2 Functionality

Currently there is three implementation of the BusSlaveFactory tool : APB3, AXI-lite 3 and Avalon.
Each implementation of that tool take as argument one instance of the corresponding bus and then offer following
functions to map your hardware into the memory mapping :

11.7. Bus Slave Factory 161

SpinalHDL Documentation

Name Re- Description
turn

busDataW- Int Return the data width of the bus
idth
read(that,addregs,bitOffsetWhen the bus read the address, fill the response with that at bitOffset
write(that,address,bitOffseéWhen the bus write the address, assign that with bus’s data from bitOffset
on- Call doThat when a write transaction occur on address
Write(address)(doThat)
on- Call doThat when a read transaction occur on address
Read(address)(doThat)
nonStop- Permanently assign that by the bus write data from bitOffset
Write(that,bitOffset)
readAnd- Make that readable and writable at address and placed at bitOffset in the word
Write(that,address,bitOffset)
readMulti-
Word(that.addrgss) Create the memory mapping to read that from ‘address’.

If that is bigger than one word it extends the register on followings addresses
writeMulti-
Word(that,addrgss) Create the memory mapping to write that at ‘address’.

If that is bigger than one word it extends the register on followings addresses
cre- T Create a write only register of type dataType at address and placed at bitOffset
ateWriteOnly(dataType,adidrehe, bitiddfset)
createRead- T Create a read write register of type dataType at address and placed at bitOffset
Write(dataTypejaddress,bitffeetyord
create- Flow[T]] Create a writable Flow register of type dataType at address and placed at
AndDrive- bitOffset in the word
Flow(dataType,address,bitOffset)
drive(that,address,bitOffseBrive that with a register writable at address placed at bitOffset in the word
driveAn- Drive that with a register writable and readable at address placed at bitOffset

dRead(that,address,bitOf

[Tset the word

drive- Emit on that a transaction when a write happen at address by using data placed at
Flow(that,address,bitOffselp)i tOffset in the word
readStreamNonBlocking(tﬁggd that and consume the transaction when a read happen at address.
valid <= validBitOffset bit
address payload <= payloadBitOffset+widthOf(payload) downto payloadBitOffset
validBitOffset,
payloadBitOffset)
doBitsAccumulationAnd d%%@ﬁﬁé%&&ﬁgf?mal register which at each cycle do :
reg :=reg | that
address Then when a read occur, the register is cleared. This register is readable at address
and placed at bitOffset in the word
bitOffset)
162 Chapter 11. Libraries

SpinalHDL Documentation

11.8 Fiber framework

Currently in developpement.

The Fiber to run the hardware elaboration in a out of order manner, a bit similarly to Makefile, where you can
define rules and dependencies which will then be solved when you run a make command. It is very similar to the
Scala Future feature.

Such framework complexify simple things but provide some strong feature for complex cases :

* You can define things before even knowing all their requirements, ex : instanciating a interruption controller,
before knowing how many lines of interrupt you need

* Abstract/lazy/partial SoC architecture definition allowing the creation of SoC template for further speciali-
sations

¢ Automatic requirements negotiation between multiple agents in a decentralized way, ex : between masters
and slaves of a memory bus

The framework is mainly composed of :
* Handle[T], which can be used later to store a value of type T.
¢ handle.load which allow to set the value of a handle (will reschedule all tasks waiting on it)

* handle.get, which return the value of the given handle. Will block the task execution if that handle isn’t
loaded yet

* Handle{ code }, which fork a new task which will execute the given code. The result of that code will be
loaded into the Handle

¢ soon(handle), which allow the current task to announce that soon it will load that handle with a value (used
to track which handle will

Warning, this is realy not usual RTL description and aim large system generation. It is currently used as toplevel
integration tool in SaxonSoC.

11.8.1 Simple dummy example

There is a simple example :

import spinal.core.fiber._

// Create two empty Handles
val a, b = Handle[Int]

// Create a Handle which will be loaded asynchronously by the given body result
val calculator = Handle {

a.get + b.get // .get will block until they are loaded
}

// Same as above
val printer = Handle {

println(s"a + b = calculator.get!") // .get is blocking until the calculator.
—~body is done
}
// Synchronously load a and b, this will unblock a.get and b.get
a.load(3)
b.load(4)

Its runtime will be :

11.8. Fiber framework 163

SpinalHDL Documentation

e create aand b

« fork the calculator task, but is blocked when executing a.get

« fork the printer task, but is blocked when executing calculator.get

* load a and b, which reschedule the calculator task (as it was waiting on a)

e calculator do its a + b sum, and load its Handle with that result, which reschedule the printer task
* printer task print its stuff

* everything done

So, the main point of that example is to show that we kind of overcome the sequential execution of things, as a and
b are loaded after the definition of the calculator.

11.8.2 Handle[T]

Handle[T] are a bit like scala’s Future[T], they allow to talk about something before it is even existing, and wait on
it.

val x,y = Handle[Int]

val xPlus2 : Handle[Int] = x.produce(x.get + 2) //x.produce can be used to generate a.
—new Handle when x is loaded

val xPlus3 : Handle[Int] = x.derivate(_ + 3) //x.derivate is as x.produce, but,
—also provide the x.get as argument of the lambda function

x.load(3) //x will now contain the value 3

soon(handle)
In order to maintain a proper graph of dependencies between tasks and Handle, a task can specify in advance that

it will load a given handle. This is very usefull in case of a generation starvation/deadlock for SpinalHDL to report
accuratly where is the issue.

11.9 Bus

11.9.1 AHB-Lite3

Configuration and instanciation

First each time you want to create a AHB-Lite3 bus, you will need a configuration object. This configuration object
is an AhbLite3Config and has following arguments :

Parameter name | Type Default Description
addressWidth Int Width of HADDR (byte granularity)
dataWidth Int Width of HWDATA and HRDATA

There is in short how the AHB-Lite3 bus is defined in the SpinalHDL library :

case class AhbLite3(config: AhbLite3Config) extends Bundle with IMasterSlave{
// Address and control
val HADDR = UlInt(config.addressWidth bits)
val HSEL = Bool()
val HREADY = Bool()
val HWRITE = Bool()

(continues on next page)

164 Chapter 11. Libraries

SpinalHDL Documentation

(continued from previous page)

}

val HSIZE = Bits(3 bits)
val HBURST = Bits(3 bits)
val HPROT = Bits(4 bits)
val HTRANS = Bits(2 bits)
val HMASTLOCK = Bool()

// Data

val HWDATA = Bits(config.dataWidth bits)
Bits(config.dataWidth bits)

val HRDATA

// Transfer response
val HREADYOUT = Bool()
val HRESP = Bool()

override def asMaster(): Unit = {

out (HADDR ,HWRITE,HSIZE,HBURST,HPROT,HTRANS , HMASTLOCK , HWDATA , HREADY , HSEL)

in(HREADYOUT , HRESP,HRDATA)
}

There is a short example of usage :

val ahbConfig = AhbLite3Config(

addressWidth = 12,
dataWidth = 32

)

val ahbX = AhbLite3(ahbConfig)

val ahbY = AhbLite3(ahbConfig)

when (ahbY.HSEL) {

}

Y/

Variations

There is an AhbLite3Master variation. The only difference is the absence of the HREADYOUT signal. This variation

should only be used by masters while the interconnect and slaves use AhbLite3.

11.9.2 Apb3

Introduction

The AMBA3-APB bus is commonly used to interface low bandwidth peripherals.

11.9. Bus

165

SpinalHDL Documentation

Configuration and instanciation

First each time you want to create a APB3 bus, you will need a configuration object. This configuration object is
an Apb3Config and has following arguments :

Parameter name | Type Default Description

addressWidth Int Width of PADDR (byte granularity)
dataWidth Int Width of PWDATA and PRDATA
selWidth Int 1 With of PSEL

useSlaveError Boolean false Specify the presence of PSLVERROR

There is in short how the APB3 bus is defined in the SpinalHDL library :

case class Apb3(config: Apb3Config) extends Bundle with IMasterSlave {

val PADDR = UInt(config.addressWidth bit)
val PSEL = Bits(config.selWidth bits)
val PENABLE = Bool()
val PREADY = Bool()
val PWRITE = Bool()
val PWDATA = Bits(config.dataWidth bit)
val PRDATA = Bits(config.dataWidth bit)
val PSLVERROR = if(config.useSlaveError) Bool() else null
Y/
}

There is a short example of usage :

val apbConfig = Apb3Config(
addressWidth = 12,
dataWidth = 32

)

val apbX = Apb3(apbConfig)

val apbY = Apb3(apbConfig)

when (apbY.PENABLE) {
Y/
}

Functions and operators

Name Return Description
X>>Y Connect X to Y. Address of Y could be smaller than the one of X
X<<Y Do the reverse of the >> operator

11.9.3 Axi4

Introduction

The AXI4 is a high bandwidth bus defined by ARM.

166 Chapter 11. Libraries

SpinalHDL Documentation

Configuration and instanciation

First each time you want to create a AXI4 bus, you will need a configuration object. This configuration object is
an Axi4Config and has following arguments :

Note : useXXX specify if the bus has XXX signal present.

Parameter name | Type Default
addressWidth Int

dataWidth Int

idWidth Int

userWidth Int

useld Boolean | true
useRegion Boolean | true
useBurst Boolean | true
useLock Boolean | true
useCache Boolean | true
useSize Boolean | true
useQos Boolean | true
useLen Boolean | true
useLast Boolean | true
useResp Boolean | true
useProt Boolean | true
useStrb Boolean | true
useUser Boolean | false

There is in short how the AXI4 bus is defined in the SpinalHDL library :

case class Axi4(config: Axi4Config) extends Bundle with IMasterSlave{
val aw = Stream(Axi4Aw(config))
val w = Stream(Axi4W(config))
val b = Stream(Axi4B(config))
val ar = Stream(Axi4Ar(config))
val r = Stream(Axi4R(config))

override def asMaster(): Unit = {
master(ar,aw,w)
slave(r,b)
}
}

There is a short example of usage :

val axiConfig = Axi4Config(
addressWidth = 32,

dataWidth = 32,
idWidth =4

)

val axiX = Axi4(axiConfig)

val axiY = Axi4(axiConfig)

when(axiY.aw.valid){
Y/
}

11.9. Bus 167

SpinalHDL Documentation

Variations

There is 3 other variation of the Axi4 bus :

Type Description

Axi4ReadOnly | Only AR and R channels are present
Axi4WriteOnly | Only AW, W and B channels are present
Axi4Shared

This variation is a library initiative.

It use 4 channels, W, B ,R and also a new one which is named AWR.

The AWR channel can be used to transmit AR and AW transactions. To dissociate them, a
signal write is present.

The advantage of this Axi4Shared variation is to use less area, especially in the
interconnect.

Functions and operators

Name Return Description

X>>Y Connect X to Y. Able infer default values as specified in the AX14 specification,
and also to adapt some width in a safe manner.

X<<Y Do the reverse of the >> operator

X.toWriteOnly Axi4WriteOnly Return an Axi4WriteOnly bus drive by X

X.toReadOnly| Axi4ReadOnly Return an Axi4ReadOnly bus drive by X

11.9.4 AvalonMM

Introduction

The AvalonMM bus fit very well in FPGA. It is very flexible :

* Able of the same simplicity than APB

* Better for than AHB in many application that need bandwidth because AvalonMM has a mode that decouple
read response from commands (reduce latency read latency impact).

* Less performance than AXI but use much less area (Read and write command use the same handshake
channel. The master don’t need to store address of pending request to avoid Read/Write hazard)

Configuration and instanciation

The AvalonMM Bundle has a construction argument AvalonMMConfig. Because of the flexible nature of the Avalon
bus, the AvalonMMConfig as many configuration elements. For more information the Avalon spec could be find

there.

case class AvalonMMConfig(addressWidth :

Int,
dataWidth : Int,
burstCountWidth : Int,
useByteEnable : Boolean,
useDebugAccess : Boolean,
useRead : Boolean,
uselWirite : Boolean,
useResponse : Boolean,
useLock : Boolean,

(continues on next page)

168

Chapter 11. Libraries

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf

SpinalHDL Documentation

(continued from previous page)

useWaitRequestn : Boolean,
useReadDataValid : Boolean,
useBurstCount : Boolean,

//useEndOfPacket : Boolean,

addressUnits : AddressUnits = symbols,
burstCountUnits : AddressUnits = words,
burstOnBurstBoundariesOnly : Boolean = false,
constantBurstBehavior : Boolean = false,
holdTime : Int = O,

linewrapBursts : Boolean = false,
maximumPendingReadTransactions : Int = 1,
maximumPendingWriteTransactions : Int = 0, // unlimited
readlLatency : Int = 0,

readWaitTime : Int = O,

setupTime : Int = O,

writeWaitTime : Int = 0

)

This configuration class has also some functions :

Name Return Description
getReadOn- | AvalonMM- | Return a similar configuration but with all write feature disabled
lyConfig Config

getWriteOn- | AvalonMM- | Return a similar configuration but with all read feature disabled
lyConfig Config

This configuration companion object has also some functions to provide some AvalonMMConfig templates :

Name Return Description

fixed(addressWidthidadowNii;readlaRatoyn a simple configuration with fixed read timings
Config

pipelined(address WAdahoddBMAidth) | Return a configuration with variable latency read (readDataValid)
Config

bursted(address WidthadatdWMittth, bursKéowrnt Widthfi guration with variable latency read and burst capabilities
Config

// Create a write only AvalonMM configuration with burst capabilities and byte enable
val myAvalonConfig = AvalonMMConfig.bursted(
addressWidth = addressWidth,
dataWWidth = memDataWidth,
burstCountWidth = log2Up(burstSize + 1)
) .copy(
useByteEnable = true,
constantBurstBehavior = true,
burstOnBurstBoundariesOnly = true
) .getWriteOnlyConfig

// Create an instance of the AvalonMM bus by using this configuration
val bus = AvalonMM(myAvalonConfig)

11.9. Bus 169

SpinalHDL Documentation

11.10 Com

11.10.1 UART

Introduction

The UART protocol could be used, for instance, to emit and receive RS232 / RS485 frames.

There is an example of an 8 bits frame, with no parity and one stop bit :

RXD ~ \Start/ D0 Y\ D1 Y D2 \ D3 \ D4 X D5 ¥ D6 {\ D7 /Stop\{

Bus definition

case class Uart() extends Bundle with IMasterSlave {
val txd = Bool() // Used to emit frames
val rxd = Bool() // Used to receive frames

override def asMaster(): Unit = {
out (txd)
in(rxd)
}
}

UartCtrl

An Uart controller is implemented in the library. This controller has the specificity to use a sampling window to
read the rxd pin and then to using an majority vote to filter its value.

0] di- type | Description

name | rec-
tion
con- | in UartC-| Used to set the clock divider/parity/stop/data length of the controller
fig trl-
Con-
fig

write | slave | Stream[Btsjam port used to request a frame transmission
read mas- | Flow[Bitklow port used to receive decoded frames

ter
uart mas- | Uart | Interface to the real world
ter

The controller could be instantiated via an UartCtrlGenerics configuration object :

170 Chapter 11. Libraries

SpinalHDL Documentation

At- type Description
tribute
dataW-| Int Maximal number of bit inside a frame
idth-
Max
clock- | Int Width of the internal clock divider
Di-

vider-
Width
pre- Int Specify how many samplingTick are drop at the beginning of a UART baud
Sam-

pling-

Size

sam- Int Specify how many samplingTick are used to sample rxd values in the middle of the UART
pling- baud

Size

post- Int Specify how many samplingTick are drop at the end of a UART baud
Sam-
pling-
Size

11.11 10

11.11.1 ReadableOpenDrain

ReadableOpenDrain

The ReadableOpenDrain bundle is defined as following :

case class ReadableOpenDrain[T<: Data](dataType : HardType[T]) extends Bundle with.
—IMasterSlave{
val write,read : T = dataType()

override def asMaster(): Unit = {
out(write)
in(read)
}
}

Then, as a master, you can use the read signal to read the outside value and use the write to set the value that you
want to drive on the output.

There is an example of usage :

val io = new Bundle{
val dataBus = master(ReadableOpenDrain(Bits(32 bits)))

}

io.dataBus.write := 0x12345678
when(io.dataBus.read === 42){
}

11.11. 10 171

SpinalHDL Documentation

11.11.2 TriState

Introduction

Tri-state signals are weird to handle in many cases:
* They are not really kind of digital things
* And except for IO, they aren’t used for digital design
* The tristate concept doesn’t fit naturally in the SpinalHDL internal graph.

SpinalHDL provides two different abstractions for tristate signals. The TriState bundle and Analog and inout
signals. Both serve different purposes:

* TriState should be used for most purposes, especially within a design. The bundle contains an additional
signal to carry the current direction.

* Analog and inout should be used for drivers on the device boundary and in some other special cases. See
the referenced documentation page for more details.

As stated above, the recommended approach is to use TriState within a design. On the top-level the TriState
bundle is then assigned to an analog inout to get the synthesis tools to infer the correct I/O driver. This can be done
automatically done via the InOutWrapper or manually if needed.

TriState

The TriState bundle is defined as following :

case class TriState[T <: Data](dataType : HardType[T]) extends Bundle with.
—IMasterSlave{

val read,write : T = dataType()

val writeEnable = Bool()

override def asMaster(): Unit = {
out(write,writeEnable)
in(read)
}
}

A master can use the read signal to read the outside value, the writeEnable to enable the output, and finally use
write to set the value that is driven on the output.

There is an example of usage:

val io = new Bundle{
val dataBus = master(TriState(Bits(32 bits)))

}

io.dataBus.writeEnable := True
io.dataBus.write := 0x12345678
when(io.dataBus.read === 42){
}

172 Chapter 11. Libraries

SpinalHDL Documentation

TriStateArray

In some case, you need to have the control over the output enable of each individual pin (Like for GPIO). In this
range of cases, you can use the TriStateArray bundle.

It is defined as following :

case class TriStateArray(width : BitCount) extends Bundle with IMasterSlave{
val read,write,writeEnable = Bits(width)

override def asMaster(): Unit = {
out (write,writeEnable)
in(read)
}
}

It is the same than the TriState bundle, except that the writeEnable is an Bits to control each output buffer.

There is an example of usage :

val io = new Bundle{
val dataBus = master(TriStateArray(32 bits)
}

io.dataBus.writeEnable := 0x87654321

io.dataBus.write := 0x12345678
when(io.dataBus.read === 42){

}

11.12 Graphics

11.12.1 Colors

RGB

You can use an Rgb bundle to model colors in hardware. This Rgb bundle take as parameter an RgbConfig classes
which specify the number of bits for each channels :

case class RgbConfig(rWidth : Int,gWidth : Int,bWidth : Int){
def getWidth = rWidth + gWidth + bWidth
}

case class Rgb(c: RgbConfig) extends Bundle{
val r = UInt(c.rWidth bits)
val g = UInt(c.gWidth bits)
val b = UInt(c.bWidth bits)

}

Those classes could be used as following :

val config = RgbConfig(5,6,5)
val color = Rgb(config)
color.r := 31

11.12. Graphics 173

SpinalHDL Documentation

11.12.2 VGA

VGA bus

An VGA bus definition is available via the Vga bundle.

case class Vga (rgbConfig: RgbConfig) extends Bundle with IMasterSlave{
val vSync = Bool()
val hSync = Bool()

val colorEn = Bool() //High when the frame is inside the color area
val color = Rgb(rgbConfig)

override def asMaster() = this.asOutput()

VGA timings

VGA timings could be modeled in hardware by using an VgaTimings bundle :

case class VgaTimingsHV(timingsWidth: Int) extends Bundle {
val colorStart = UInt(timingsWidth bit)
val colorEnd = UInt(timingsWidth bit)
val syncStart = UInt(timingsWidth bit)
val syncEnd = UInt(timingsWidth bit)
}

case class VgaTimings(timingsWidth: Int) extends Bundle {
val h = VgaTimingsHV(timingsWidth)
val v = VgaTimingsHV(timingsWidth)

def setAs_h640_v480_r60 = ...
def driveFrom(busCtrl : BusSlaveFactory,baseAddress : Int) = ...

VGA controller

An VGA controller is available. It’s definition is the following :

case class VgaCtrl(rgbConfig: RgbConfig, timingsWidth: Int = 12) extends Component {
val io = new Bundle {
val softReset = in Bool()
val timings = in(VgaTimings(timingsWidth))

val frameStart = out Bool()
val pixels slave Stream (Rgb(rgbConfig))

val vga = master(Vga(rgbConfig))
val error = out Bool()

}

/) ..

frameStart is a signals that pulse one cycle at the beginning of each new frame.

174 Chapter 11. Libraries

SpinalHDL Documentation

pixels is a stream of color used to feed the VGA interface when needed.
error is high when a transaction on the pixels is needed, but nothing is present.

11.13 EDA

11.13.1 QSysify

Introduction
QSysify is a tool which is able to generate a QSys IP (tcl script) from a SpinalHDL component by analysing its IO
definition. It currently implement the following interfaces features :

* Master/Slave AvalonMM

* Master/Slave APB3

* Clock domain input

* Reset output

¢ Interrupt input

¢ Conduit (Used in last resort)

Example

In the case of a UART controller :

case class AvalonMMUartCtrl(...) extends Component{
val io = new Bundle{
val bus = slave(AvalonMM(AvalonMMUartCtrl.getAvalonMMConfig))
val uart = master(Uart())

}

Y/
}

The following main will generate the Verilog and the QSys TCL script with io.bus as an AvalonMM and io.uart
as a conduit :

object AvalonMMUartCtrl{
def main(args: Array[String]) {
//Generate the Verilog
val toplevel = SpinalVerilog(AvalonMMUartCtrl (UartCtrlMemoryMappedConfig(...))).
—toplevel

//Add some tags to the avalon bus to specify it's clock domain (information used.

by QSysify)
toplevel.io.bus addTag(ClockDomainTag(toplevel.clockDomain))

//Generate the QSys IP (tcl script)
QSysify(toplevel)
}
}

11.13. EDA 175

SpinalHDL Documentation

tags

Because QSys require some information that are not specified in the SpinalHDL hardware specification, some tags
should be added to interface:

AvalonMM / APB3

io.bus addTag(ClockDomainTag(busClockDomain))

Interrupt input

io.interrupt addTag(InterruptReceiverTag(relatedMemoryInterfacei,..
—interruptClockDomain))

Reset output

io.resetOutput addTag(ResetEmitterTag(resetOutputClockDomain))

Adding new interface support
Basically, the QSysify tool can be setup with a list of interface emitter (as you can see here)

You can create your own emitter by creating a new class extending QSysifyInterfaceEmiter

11.13.2 QuartusFlow

Introduction
A compilation flow is an Altera-defined sequence of commands that use a combination of command-line executa-

bles. A full compilation flow launches all Compiler modules in sequence to synthesize, fit, analyze final timing,
and generate a device programming file.

Tools in this file help you get rid of redundant Quartus GUI.

For a single rtl file

The object spinal.lib.eda.altera.QuartusFlow can automatically report the used area and maximum fre-
quency of a single rtl file.

Example

val report = QuartusFlow(
quartusPath="/eda/intelFPGA_lite/17.0/quartus/bin/",
workspacePath="/home/spinalvm/tmp",
toplevelPath="TopLevel.vhd",
family="Cyclone V",
device="5CSEMASF31C6",
frequencyTarget = 1 MHz
)
println(report)

176 Chapter 11. Libraries

https://github.com/SpinalHDL/SpinalHDL/blob/764193013f84cfe4f82d7d1f1739c4561ef65860/lib/src/main/scala/spinal/lib/eda/altera/QSys.scala#L12
https://github.com/SpinalHDL/SpinalHDL/blob/764193013f84cfe4f82d7d1f1739c4561ef65860/lib/src/main/scala/spinal/lib/eda/altera/QSys.scala#L24
https://github.com/SpinalHDL/SpinalHDL/blob/dev/lib/src/main/scala/spinal/lib/eda/altera/QuartusFlow.scala

SpinalHDL Documentation

The code above will create a new Quartus project with TopLevel . vhd.

Warning: This operation will remove the folder workspacePath!

Note: The family and device values are passed straight to the Quartus CLI as parameters. Please check the

Quartus documentation for the correct value to use in your project.

Tip

To test a component that has too many pins, set them as VIRTUAL_PIN.

val miaou: Vec[Flow[Bool]] = Vec(master(Flow(Bool())), 666)
miaou.addAttribute("altera_attribute", "-name VIRTUAL_PIN ON'")

For an existing project

The class spinal.lib.eda.altera.QuartusProject can automatically find configuration files in an existing

project. Those are used for compilation and programming the device.

Example

Specify the path that contains your project files like .gpf and . cdf.

val prj = new QuartusProject(
quartusPath = "F:/intelFPGA_lite/20.1/quartus/bin64/",
workspacePath = "G:/"
)
prj.compile()
prj.program() // automatically find Chain Description File of the project

Important: Remember to save the . cdf of your project before calling prj.program().

11.14 Misc

11.14.1 Plic Mapper

The PLIC Mapper defines the register generation and access for a PLIC (Platform Level Interrupt Controller.

11.14. Misc

177

SpinalHDL Documentation

PlicMapper.apply
(bus: BusSlaveFactory, mapping: PlicMapping) (gateways : Seq[PlicGateway], targets :
Seq[PlicTarget])
args for PlicMapper:
* bus: bus to which this ctrl is attached
* mapping: a mapping configuration (see above)
» gateways: a sequence of PlicGateway (interrupt sources) to generate the bus access control
* targets: the sequence of PlicTarget (eg. multiple cores) to generate the bus access control
It follows the interface given by riscv: https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc

As of now, two memory mappings are available :

PlicMapping.sifive

Follows the SiFive PLIC mapping (eg. E31 core complex Manual), basically a full fledged PLIC

PlicMapping.light

This mapping generates a lighter PLIC, at the cost of some missing optional features:
* no reading the intrerrupt’s priority
* no reading the interrupts’s pending bit (must use the claim/complete mechanism)
* no reading the target’s threshold

The rest of the registers & logic is generated.

11.15 Introduction

11.15.1 Introduction

The spinal.lib package goals are :
* Provide things that are commonly used in hardware design (FIFO, clock crossing bridges, useful functions)
* Provide simple peripherals (UART, JTAG, VGA, ..
¢ Provide some bus definition (Avalon, AMBA, ..)
* Provide some methodology (Stream, Flow, Fragment)
* Provide some example to get the spirit of spinal
* Provide some tools and facilities (latency analyser, QSys converter, ...)

To use features introduced in followings chapter you need, in most of cases, to import spinal.lib._ in your
sources.

Important:

This package is currently under construction. Documented features could be considered as stable.
Do not hesitate to use github for suggestions/bug/fixes/enhancements

178 Chapter 11. Libraries

https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc
https://sifive.cdn.prismic.io/sifive/9169d157-0d50-4005-a289-36c684de671b_e31_core_complex_manual_21G1.pdf

CHAPTER
TWELVE

SIMULATION

12.1 Setup and installation

SpinalSim + Verilator is supported on both Linux and Windows platforms.

12.1.1 Scala

Don’t forget to add the following in your build. sbt file:

fork := true

And you will always need the following imports in your Scala testbench:

import spinal.core._
import spinal.core.sim._

12.1.2 Linux

You will also need a recent version of Verilator installed :

sudo apt-get install git make autoconf g++ flex bison -y # First time prerequisites
git clone http://git.veripool.org/git/verilator # Only first time

unsetenv VERILATOR_ROOT # For csh; ignore error if on bash

unset VERILATOR_ROOT # For bash

cd verilator

git pull # Make sure we're up-to-date
git checkout v4.040

autoconf # Create ./configure script
./configure

make -j$(nproc)
sudo make install
echo "DONE"

179

SpinalHDL Documentation

12.1.3 Windows

In order to get SpinalSim + Verilator working on Windows, you have to do the following:
* Install MSYS2
* Via MSYS2 get gcc/g++/verilator (for Verilator you can compile it from the sources)

e Add bin and usr\bin of MSYS2 into your windows PATH (ie : C:\msys64\usr\bin;C:\msys64\
mingw64\bin)

¢ Check that the JAVA_HOME environnement variable point to the JDK installation folder (ie : C: \Program
Files\Java\jdk-13.0.2)

Then you should be able to run SpinalSim + Verilator from your Scala project without having to use MSYS2
anymore.

From a fresh install of MSYS2 MinGW 64-bit, you will have to run the following commands inside the MSYS2
MinGW 64-bits shell (enter commands one by one):

From the MinGW package manager

pacman -Syuu

Close the MSYS2 shell once you're asked to

pacman -Syuu

pacman -S --needed base-devel mingw-w64-x86_64-toolchain \
git flex\
mingw-w64-x86_64-cmake

pacman -U http://repo.msys2.org/mingw/x86_64/mingw-w64-x86_64-verilator-4.032-1-any.
—pkg.tar.xz

Add C:\msys64\usr\bin;C:\msys64\mingw64\bin to your Windows PATH

From source

pacman -Syuu

Close the MSYS2 shell once you're asked to

pacman -Syuu

pacman -S --needed base-devel mingw-w64-x86_64-toolchain \
git flex\
mingw-w64-x86_64-cmake

git clone http://git.veripool.org/git/verilator

unset VERILATOR_ROOT

cd verilator

git pull

git checkout v4.040

autoconf

./configure

export CPLUS_INCLUDE_PATH=/usr/include:$CPLUS_INCLUDE_PATH
export PATH=/usr/bin/core_perl:$PATH

cp /usr/include/FlexLexer.h ./src

make -j$(nproc)

make install

echo "DONE"

Add C:\msys64\usr\bin;C:\msys64\mingw64\bin to your Windows PATH

180 Chapter 12. Simulation

https://www.msys2.org/

SpinalHDL Documentation

Important: Be sure that your PATH environnement variable is pointing to the JDK 1.8 and doesn’t contain a JRE
installation.

Important: Adding the MSYS2 bin folders into your windows PATH could potentialy have some side effects.
This is why it is safer to add them as the last elements of the PATH to reduce their priority.

12.2 Boot a simulation

12.2.1 Introduction

There is an example hardware definition + testbench :

//Your hardware toplevel
import spinal.core._
class TopLevel extends Component {

¥

// Your toplevel tester
import spinal.sim._
import spinal.core.sim._

object DutTests {
def main(args: Array[String]): Unit = {
SimConfig.withWave.compile(new TopLevel).doSim{ dut =>
// Simulation code here
}
}
}

12.2.2 Configuration

SimConfig will return a default simulation configuration instance on which you can call multiple functions to
configure your simulation:

Syntax Description

withWave Enable simulation wave capture

withConfig(SpinalConfig) Specify the SpinalConfig that should be use to generate the hardware

allOptimisation Enable all the RTL compilation optimizations to reduce simulation time (will
increase compilation time)

workspacePath(path) Change the folder where the sim files are generated

Then you can call the compile (rtl) function to compile the hardware and warm up the simulator. This function
will return a SimCompiled instance.

On this SimCompiled instance you can run your simulation with the following functions:

12.2. Boot a simulation 181

SpinalHDL Documentation

seed])]{dut => ...}

Syntax Description

doSim[(simName[, seed])]{dut Run the simulation until the main thread is done (doesn’t wait on forked
= ...} threads) or until all threads are stuck
doSimUntilVoid[(simNamel[, Run the simulation until all threads are done or stuck

For example :

val spinalConfig = SpinalConfig(defaultClockDomainFrequency = FixedFrequency (10 MHz))

SimConfig
.withConfig(spinalConfig)
.withWave
.allOptimisation
.workspacePath("~/tmp")
.compile(new TopLevel)
.doSim { dut =>

// Simulation code here

}

Note that by default, the simulation files will be placed into the simWorkspace/xxx folders. You can override the

simWorkspace location by setting the SPINALSIM_WORKSPACE environnement variable.

12.2.3 Running multiple tests on the same hardware

val compiled = SimConfig.withWave.compile(new Dut)

compiled.doSim("testA") { dut =>
// Simulation code here

}

compiled.doSim("testB") { dut =>
// Simulation code here

}

12.2.4 Throw Success or Failure of the simulation from a thread

At any moment during a simulation you can call simSuccess or simFailure to end it.

12.3 Accessing signals of the simulation

12.3.1 Read and write signals

Each interface signal of the toplevel can be read and written from Scala:

182 Chapter 12

. Simulation

SpinalHDL Documentation

Syntax Description

Bool.toBoolean Read a hardware Bool as a Scala Boolean value

Bits/UInt/SInt.toInt Read a hardware BitVector as a Scala Int value

Bits/UInt/SInt.toLong Read a hardware BitVector as a Scala Long value

Bits/UInt/SInt.toBigInt Read a hardware BitVector as a Scala BigInt value

SpinalEnumCraft.toEnum Read a hardware SpinalEnumCraft as a Scala
SpinalEnumElement value

Bool #= Boolean Assign a hardware Bool from an Scala Boolean

Bits/UInt/SInt #= Int Assign a hardware BitVector from a Scala Int

Bits/UInt/SInt #= Long Assign a hardware BitVector from a Scala Long

Bits/UInt/SInt #= BigInt Assign a hardware BitVector from a Scala BigInt

SpinalEnumCraft #= SpinalEnumEle- | Assign a hardware SpinalEnumCraft from a Scala

ment SpinalEnumElement

dut.io.a #= 42

dut.io.a #= 421

dut.io.a #= BigInt("101010", 2)

dut.io.a #= BigInt("©123456789ABCDEF", 16)
println(dut.io.b.tolInt)

12.3.2 Accessing signals inside the component’s hierarchy

To access signals which are inside the component’s hierarchy, you have first to set the given signal as simPublic.

You can add this simPublic tag directly in the hardware description:

object SimAccessSubSignal {
import spinal.core.sim._

class TopLevel extends Component {
val counter = Reg(UInt(8 bits)) init(0) simPublic() // Here we add the simPublic.
—tag on the counter register to make it visible
counter := counter + 1

}

def main(args: Array[String]) {
SimConfig.compile(new TopLevel).doSim{dut =>
dut.clockDomain. forkStimulus(10)

for(i <- 0 to 3) {
dut.clockDomain.waitSampling()
println(dut.counter.toInt)
}
}
}
}

Or you can add it later, after having instantiated your toplevel for the simulation:

object SimAccessSubSignal {
import spinal.core.sim._
class TopLevel extends Component {
val counter = Reg(UInt(8 bits)) init(0)
counter := counter + 1

(continues on next page)

12.3. Accessing signals of the simulation 183

SpinalHDL Documentation

(continued from previous page)

def main(args: Array[String]) {
SimConfig.compile {
val dut = new TopLevel
dut.counter.simPublic()
dut
}.doSim{dut =>
dut.clockDomain. forkStimulus(10)

for(i <- 0 to 3) {
dut.clockDomain.waitSampling()
println(dut.counter.toInt)
}
}
}
}

12.4 Clock domains

12.4.1 Stimulus API

Below is a list of ClockDomain stimulation functions:

ClockDomain stimulus | Description
functions
forkStimulus(period) Fork a simulation process to generate the clockdomain stimulus (clock, reset,
softReset, clockEnable signals)

forkSimSpeedPrinter (printPmkiosijnulation process which will periodically print the simulation speed in
kilo-cycles per real time second. printPeriod is in realtime seconds

clockToggle() Toggle the clock signal

fallingEdge () Clear the clock signal

risingEdge() Set the clock signal

assertReset() Set the reset signal to its active level
deassertReset() Set the reset signal to its inactive level
assertClockEnable() Set the clockEnable signal to its active level
deassertClockEnable() Set the clockEnable signal to its active level
assertSoftReset () Set the softReset signal to its active level
deassertSoftReset() Set the softReset signal to its active level

184 Chapter 12. Simulation

SpinalHDL Documentation

12.4.2 Wait API

Below is a list of ClockDomain utilities that you can use to wait for a given event from the domain:

ClockDomain
wait functions

Description

waitSampling(

[Yail esttiuthe OlockDomain makes a sampling, (active clock edge && deassertReset &&
assertClockEnable)

waitRisingEdg

e Waitcyes&imint rising edges on the clock; cycleCount defaults to 1 cycle if not other-
wise specified. Note, cyclesCount = O is legal, and the function is not sensitive to re-
set/softReset/clockEnable

waitFallingEd

pSahayed @aGaRnsingEdge but for the falling edge

waitActiveEdg

e Shoye de w@auRi $ingEdge but for the edge level specified by the ClockDomainConfig

waitRisingEdg

eifaeref{cwadiRisnngEdge, but to exit, the boolean condition must be true when the rising
edge occurs

waitFallingEd

g itnea-e{ and Rt sanyEdgeWhere, but for the falling edge

waitActiveEdg

elflaere (condwaibR)singEdgelithere, but for the edge level the

ClockDomainConfig

specified by

Warning: All t
callback.

he functionalities of the wait API can only be called from inside of a thread, and not from a

12.4.3 Callba

ck API

Below is a list of ClockDomain utilities that you can use to wait for a given event from the domain:

ClockDomain
callback func-
tions

Description

{ callback }

onNextSampling Execute the callback code only once on the next ClockDomain sample (active edge + reset
{ callback } | off + clock enable on)

onSamplings Execute the callback code each time the ClockDomain sample (active edge + reset off +
{ callback } | clock enable on)

onActiveEdges| Execute the callback code each time the ClockDomain clock generates its configured edge
{ callback }

onEdges { Execute the callback code each time the ClockDomain clock generates a rising or falling
callback } edge

onRisingEdges| Execute the callback code each time the ClockDomain clock generates a rising edge

{ callback }

onFallingEdges Execute the callback code each time the ClockDomain clock generates a falling edge

12.4.4 Default ClockDomain

You can access the

default ClockDomain of your toplevel as shown below:

// Example of thread forking to generate a reset, and then toggling the clock each 5.

—time units.

// dut.clockDomain refers to the implicit clock domain created during component.,
—instantiation.

fork {

dut.clockDomain.assertReset()

(continues on next page)

12.4. Clock domains

185

SpinalHDL Documentation

(continued from previous page)

dut.clockDomain.fallingEdge ()
sleep(10)
while(true) {
dut.clockDomain.clockToggle()
sleep(5)
}
}

Note that you can also directly fork a standard reset/clock process:

dut.clockDomain. forkStimulus(period = 10)

An example of how to wait for a rising edge on the clock:

dut.clockDomain.waitRisingEdge ()

12.4.5 New ClockDomain

If your toplevel defines some clock and reset inputs which aren’t directly integrated into their ClockDomain, you
can define their corresponding ClockDomain directly in the testbench:

// In the testbench
ClockDomain(dut.io.coreClk, dut.io.coreReset).forkStimulus(10)

12.5 Thread-full API

In SpinalSim, you can write your testbench by using multiple threads in a similar way to SystemVerilog, and a bit
like VHDL/Verilog process/always blocks. This allows you to write concurrent tasks and control the simulation
time using a fluent APIL.

12.5.1 Fork and join simulation threads

// Create a new thread
val myNewThread = fork {

// New simulation thread body
}

// Wait until ‘myNewThread is execution is done.
myNewThread. join()

12.5.2 Sleep and waitUntil

// Sleep 1000 units of time
sleep(1000)

// waitUntil the dut.io.a value is bigger than 42 before continuing
waitUntil(dut.io.a > 42)

186 Chapter 12. Simulation

SpinalHDL Documentation

12.6 Thread-less API

There are some functions that you can use to avoid the need for threading, but which still allow you to control the
flow of simulation time.

Threadless Description
functions
delayed(delay) Register the callback code to be called at a simulation time delay steps after the current
callback } timestep.

The advantages of the delayed function over using a regular simulation thread + sleep are:
* Performance (no context switching)
* Memory usage (no native JVM thread memory allocation)

Some other thread-less functions related to ClLockDomain objects are documented as part of the Callback API, and
some others related with the delta-cycle execution process are documented as part of the Sensitive API

12.7 Sensitive API

You can register callback functions to be called on each delta-cycle of the simulation:

Sensitive Description
functions
forkSensitive| Register the callback code to be called at each delta-cycle of the simulation
{ callback }
forkSensitiverJHﬁngster the callback code to be called at each delta-cycle of the simulation, while the call-

{ callback } | back return value is true (meaning it should be rescheduled for the next delta-cycle)

12.8 Simulation engine

This page explains the internals of the simulation engine.

The simulation engine emulates an event-driven simulator (VHDL/Verilog like) by applying the following simu-
lation loop on the top of the Verilator C++ simulation model:

12.6. Thread-less API 187

SpinalHDL Documentation

forceDeltaCycle ?

l

Advance time to the next delayed callback

v

Call all delayed callbacks scheduled for the current time

l

Evaluate the hardware model (Verilator eval)

dut signals write
generated from the
callbacks ?

y

Apply all those dut signals write to the verilator model forceDeltaCycle = false
forceDeltaCycle = true

Y
Call all sensitive callbacks
Set forceDeltaCycle if it generated some dut signals write

At a low level, the simulation engine manages the following primitives:
* Sensitive callbacks, which allow users to call a function on each simulation delta cycle.
* Delayed callbacks, which allow users to call a function at a future simulation time.
* Simulation threads, which allow users to describe concurrent processes.

* Command buffer, which allows users to delay write access to the DUT (Device Under Test) until the end of
the current delta cycle.

There are some practical uses of those primitives:

* Sensitive callbacks can be used to wake up a simulation thread when a given condition happens, like a rising
edge on a clock.

* Delayed callbacks can be used to schedule stimuli, such as deasserting a reset after a given time, or toggling
the clock.

188 Chapter 12. Simulation

SpinalHDL Documentation

* Both sensitive and delayed callbacks can be used to resume a simulation thread.
* A simulation thread can be used (for instance) to produce stimulus and check the DUT’s output values.

* The command buffer’s purpose is mainly to avoid all concurrency issues between the DUT and the testbench.

12.9 Examples

12.9.1 Asynchronous adder

This example creates a Component out of combinational logic that does some simple arithmetic on 3 operands.
The test bench performs the following steps 100 times:

* Initialize a, b, and c to random integers in the 0..255 range.

 Stimulate the DUT’s matching a, b, c inputs.

e Wait 1 simulation timestep (to allow the inputs to propagate).

 Check for correct output.

import spinal.sim._
import spinal.core._
import spinal.core.sim._

import scala.util.Random

object SimAsynchronousExample {
class Dut extends Component {
val io = new Bundle {
val a, b, ¢ = in UInt (8 bits)
val result = out UInt (8 bits)
}
io.result := io.a + io.b - io.c

}

def main(args: Array[String]): Unit = {
SimConfig.withWave.compile(new Dut).doSim{ dut =>
var idx = 0
while(idx < 100){
val a, b, ¢ = Random.nextInt(256)
dut.io.a #= a
dut.io.b #= Db
dut.io.c #= c
sleep(1l) // Sleep 1 simulation timestep
assert(dut.io.result.toInt == ((a + b - ¢) & OxFF))
idx += 1

12.9. Examples 189

SpinalHDL Documentation

12.9.2 Dual clock fifo

This example creates a StreamFifoCC, which is designed for crossing clock domains, along with 3 simulation
threads.

The threads handle:
* Management of the two clocks
* Pushing to the FIFO
* Popping from the FIFO
The FIFO push thread randomizes the inputs.

The FIFO pop thread handles checking the the DUT’s outputs against the reference model (an ordinary scala.
collection.mutable.Queue instance).

import spinal.sim._
import spinal.core._
import spinal.core.sim._

import scala.collection.mutable.Queue

object SimStreamFifoCCExample {
def main(args: Array[String]): Unit = {
// Compile the Component for the simulator.
val compiled = SimConfig.withWave.allOptimisation.compile(
rtl = new StreamFifoCC(
dataType = Bits(32 bits),
depth = 32,
pushClock = ClockDomain.external('clkA™),
popClock = ClockDomain.external("clkB")
)
)

// Run the simulation.
compiled.doSimUntilVoid{dut =>
val queueModel = mutable.Queue[Long] ()

// Fork a thread to manage the clock domains signals
val clocksThread = fork {
// Clear the clock domains' signals, to be sure the simulation captures their.
. first edges.
dut.pushClock.fallingEdge ()
dut.popClock.fallingEdge()
dut.pushClock.deassertReset()
dut.popClock.deassertReset()
sleep(0)

// Do the resets.
dut.pushClock.assertReset()
dut.popClock.assertReset()
sleep(10)
dut.pushClock.deassertReset ()
dut.popClock.deassertReset ()
sleep(1)

// Forever, randomly toggle one of the clocks.

(continues on next page)

190 Chapter 12. Simulation

SpinalHDL Documentation

(continued from previous page)

// This will create asynchronous clocks without fixed frequencies.
while(true) {
if (Random.nextBoolean()) {
dut.pushClock.clockToggle()
} else {
dut.popClock.clockToggle()
}
sleep(l)
}
}

// Push data randomly, and fill the queueModel with pushed transactions.
val pushThread = fork {
while(true) {
dut.io.push.valid.randomize()
dut.io.push.payload.randomize()
dut.pushClock.waitSampling()
if(dut.io.push.valid.toBoolean && dut.io.push.ready.toBoolean) {
queueModel . enqueue (dut.io.push.payload.toLong)
}
}
}

// Pop data randomly, and check that it match with the queueModel.
val popThread = fork {
for(i <- ® until 100000) {
dut.io.pop.ready.randomize()
dut.popClock.waitSampling()
if(dut.io.pop.valid.toBoolean && dut.io.pop.ready.toBoolean) {
assert(dut.io.pop.payload.tolLong == queueModel.dequeue())
}
}
simSuccess()

}

12.9.3 Single clock fifo

This example creates a StreamFifo, and spawns 3 simulation threads. Unlike the Dual clock fifo example, this
FIFO does not need complex clock management.

The 3 simulation threads handle:
* Managing the clock/reset
¢ Pushing to the FIFO
* Popping from the FIFO
The FIFO push thread randomizes the inputs.

The FIFO pop thread handles checking the the DUT’s outputs against the reference model (an ordinary scala.
collection.mutable.Queue instance).

import spinal.sim._
import spinal.core._

(continues on next page)

12.9. Examples 191

SpinalHDL Documentation

(continued from previous page)

import spinal.core.sim._

import scala.collection.mutable.Queue

object SimStreamFifoExample {
def main(args: Array[String]): Unit = {
// Compile the Component for the simulator.
val compiled = SimConfig.withWave.allOptimisation.compile(
rtl = new StreamFifo(
dataType = Bits(32 bits),
depth = 32
)
)

// Run the simulation.
compiled.doSimUntilVoid{dut =>
val queueModel = mutable.Queue[Long] ()

dut.clockDomain. forkStimulus(period = 10)
SimTimeout (1000000%10)

// Push data randomly, and fill the queueModel with pushed transactions.
val pushThread = fork {
dut.io.push.valid #= false
while(true) {
dut.io.push.valid.randomize()
dut.io.push.payload.randomize()
dut.clockDomain.waitSampling()
if(dut.io.push.valid.toBoolean && dut.io.push.ready.toBoolean) {
queueModel . enqueue (dut.io.push.payload. toLong)
}
}
}

// Pop data randomly, and check that it match with the queueModel.
val popThread = fork {
dut.io.pop.ready #= true
for(i <- 0 until 100000) {
dut.io.pop.ready.randomize()
dut.clockDomain.waitSampling()
if(dut.io.pop.valid.toBoolean && dut.io.pop.ready.toBoolean) {
assert(dut.io.pop.payload.tolLong == queuelModel.dequeue())
}
}
simSuccess()
}
}
}
}

192 Chapter 12. Simulation

SpinalHDL Documentation

12.9.4 Synchronous adder

This example creates a Component out of sequential logic that does some simple arithmetic on 3 operands.
The test bench performs the following steps 100 times:

* Initialize a, b, and c to random integers in the 0..255 range.

 Stimulate the DUT’s matching a, b, c inputs.

* Wait until the simulation samples the DUT’s signals again.

* Check for correct output.

The main difference between this example and the Asynchronous adder example is that this Component has to use
forkStimulus to generate a clock signal, since it is using sequential logic internally.

import spinal.sim._
import spinal.core._
import spinal.core.sim._

import scala.util.Random

object SimSynchronousExample {
class Dut extends Component {
val io = new Bundle {
val a, b, ¢ = in UInt (8 bits)
val result = out UInt (8 bits)
}
io.result := RegNext(io.a + io.b - io.c) init(0)

}

def main(args: Array[String]): Unit = {
SimConfig.withWave.compile(new Dut).doSim{ dut =>
dut.clockDomain. forkStimulus(period = 10)

var resultModel = 0
for(idx <- O until 100){
dut.io.a #= Random.nextInt(256)
dut.io.b #= Random.nextInt(256)
dut.io.c #= Random.nextInt(256)
dut.clockDomain.waitSampling()
assert(dut.io.result.toInt == resultModel)
resultModel = (dut.io.a.toInt + dut.io.b.toInt - dut.io.c.toInt) & OxFF

12.9. Examples 193

SpinalHDL Documentation

12.9.5 Uart decoder

// Fork a simulation process which will analyze the uartPin and print transmitted.
—bytes into the simulation terminal.
fork {
// Wait until the design sets the uartPin to true (wait for the reset effect).
waitUntil (uartPin.toBoolean == true)

while(true) {
waitUntil (uartPin.toBoolean == false)
sleep(baudPeriod/2)

assert(uartPin.toBoolean == false)
sleep(baudPeriod)

var buffer = 0
for(bitId <- 0 to 7) {
if(uartPin.toBoolean)
buffer |= 1 << bitId
sleep(baudPeriod)
}

assert(uartPin.toBoolean == true)
print (buffer. toChar)

12.9.6 Uart encoder

// Fork a simulation process which will get chars typed into the simulation terminal.
—and transmit them on the simulation uartPin.
fork{
uartPin #= true
while(true) {
// System.in is the java equivalent of the (C's stdin.
if(System.in.available() != 0) {
val buffer = System.in.read()
uartPin #= false
sleep(baudPeriod)

for(bitId <- 0 to 7) {
uartPin #= ((buffer >> bitId) & 1) != 0
sleep(baudPeriod)

}

uartPin #= true
sleep(baudPeriod)
} else {
sleep(baudPeriod * 10) // Sleep a little while to avoid polling System.in too.
—often.
}
}
3

194 Chapter 12. Simulation

SpinalHDL Documentation

12.10 Introduction

As always, you can use your standard simulation tools to simulate the VHDL/Verilog files generated by Spinal-
HDL, but since SpinalHDL 1.0.0 the language integrates an API that allows you to write testbenches and test your
hardware directly in Scala.

The simulation API provides the capabilities to:
* Read and write the DUT’s signals
 Fork and join simulation processes

* Sleep and wait until a given condition is filled

12.11 How does SpinalHDL simulate the hardware?

Behind the scenes, SpinalHDL generates a C++ cycle-accurate model of your hardware by generating the equivalent
Verilog, and then using Verilator to convert it into a C++ model.

Then SpinalHDL uses GCC to compile the C++ model into a shared object (.so) file, and binds it back to Scala via
JNL

Finally, as the native Verilator API is rather crude, SpinalHDL abstracts over it by providing both single and multi-
threaded simulation APIs to help the user construct testbench implementations.

This simulation methodology has several advantages:
e The C++ simulation model processes simulation steps very quickly
* It tests the generated Verilog hardware instead of the SpinalHDL internal model

* Itdoesn’t require SpinalHDL to be able to simulate the hardware itself (This keeps the codebase smaller, and
reduces bugs, since Verilator is a reliable tool)

However, there are some limitations:

* Verilator will only accept synthesizable Verilog code

12.12 Performance

As Verilator is the current simulation backend, the simulation speed is very fast.

On a small SoC like Murax a modern laptop can simulate 1.2 million clock cycles or more, per realtime second.

12.10. Introduction 195

https://en.wikipedia.org/wiki/Java_Native_Interface
https://github.com/SpinalHDL/VexRiscv

SpinalHDL Documentation

196 Chapter 12. Simulation

CHAPTER
THIRTEEN

EXAMPLES

13.1 Simple ones

13.1.1 APB3 definition

Introduction

This example will show the syntax to define an APB3 Bundle.

Specification

The specification from ARM could be interpreted as follows:

Signal Type Driver side | Comment
Name

PADDR Ulnt(addressWidth bits) Master Address in byte
PSEL Bits(selWidth) Master One bit per slave
PENABLE Bool Master

PWRITE Bool Master

PWDATA Bits(dataWidth bits) Master

PREADY Bool Slave

PRDATA Bits(dataWidth bits) Slave

PSLVER- Bool Slave Optional

ROR

Implementation

This specification shows that the APB3 bus has multiple possible configurations. To represent that, we can define
a configuration class in Scala:

case class Apb3Config(
addressWidth : Int,
dataWidth : Int,
selWidth : Int =1,
useSlaveError : Boolean = true

Then we can define the APB3 Bundle which will be used to represent the bus in hardware:

case class Apb3(config: Apb3Config) extends Bundle with IMasterSlave {
val PADDR = UInt(config.addressWidth bit)
val PSEL = Bits(config.selWidth bits)

(continues on next page)

197

SpinalHDL Documentation

(continued from previous page)

val PENABLE = Bool()
val PREADY = Bool()
val PWRITE = Bool()
val PWDATA = Bits(config.dataWidth bit)

val PRDATA = Bits(config.dataWidth bit)
val PSLVERROR = if(config.useSlaveError) Bool else null

override def asMaster(): Unit = {
out (PADDR, PSEL , PENABLE, PWRITE,PWDATA)
in(PREADY,PRDATA)
if(config.useSlaveError) in(PSLVERROR)
}
}

Usage

Here is a usage example of this definition:

val apbConfig = Apb3Config(
addressWidth = 16,
dataWidth 32,
selWidth =1,
useSlaveError = false

)

val io = new Bundle{
val apb = slave(Apb3(apbConfig))
}

io.apb.PREADY := True

when(io.apb.PSEL(0) && io.apb.PENABLE) {
Y/

}

13.1.2 Carry adder

This example defines a component with inputs a and b, and a result output. At any time, result will be the sum
of a and b (combinatorial). This sum is manually done by a carry adder logic.

class CarryAdder(size : Int) extends Component{
val io = new Bundle{
val a = in UInt(size bits)
val b = in UInt(size bits)
val result = out UInt(size bits) //result = a + b
}

var c = False //Carry, like a VHDL variable
for (i <- 0 until size) {

//Create some intermediate value in the loop scope.

val a = io.a(i)

val b = io.b(i)

//The carry adder's asynchronous logic
io.result(i) :=a * b A c

(continues on next page)

198 Chapter 13. Examples

SpinalHDL Documentation

(continued from previous page)

c\=(@&Db) | (@&c) | (b&o); //variable assignment
}
}

object CarryAdderProject {
def main(args: Array[String]) {
SpinalVhdl (new CarryAdder(4))
}
}

13.1.3 Color summing

First let’s define a Color Bundle with an addition operator.

case class Color(channelWidth: Int) extends Bundle {
val r = UInt(channelWidth bits)
val g = UInt(channelWidth bits)
val b = UInt(channelWidth bits)

def +(that: Color): Color = {
val result = Color(channelWidth)
result.r := this.r + that.r
result.g := this.g + that.g
result.b := this.b + that.b
return result

}
def clear(): Color ={
this.r = 0
this.g = 0
this.b := 0
this

Then let’s define a component with a sources input which is a vector of colors, and a result output which is the
sum of the sources input.

class ColorSumming(sourceCount: Int, channelWidth: Int) extends Component {
val io = new Bundle {
val sources = in Vec(Color(channelWidth), sourceCount)
val result = out(Color(channelWidth))

}

var sum = Color(channelWidth)

sum.clear()

for (i <- ©® to sourceCount - 1) {
sum \= sum + io.sources(i)

}

io.result := sum

13.1. Simple ones 199

SpinalHDL Documentation

13.1.4 Counter with clear

This example defines a component with a clear input and a value output. Each clock cycle, the value output is
incrementing, but when clear is high, value is cleared.

class Counter(width : Int) extends Component{
val io = new Bundle{
val clear = in Bool()
val value = out UInt(width bits)

}
val register = Reg(UInt(width bits)) init(0)
register := register + 1
when(io.clear){
register := 0
}
io.value := register
3

13.1.5 Introduction

All examples assume that you have the following imports on the top of your scala file:

import spinal.core._
import spinal.lib._

To generate VHDL for a given component, you can place the following at the bottom of your scala file:

object MyMainObject {
def main(args: Array[String]) {
SpinalVhdl (new TheComponentThatIWantToGenerate(constructionArguments)) //Or.
—SpinalVerilog
}
}

13.1.6 PLL BlackBox and reset controller

Let’s imagine you want to define a TopLevel component which instantiates a PLL BlackBox, and create a new
clock domain from it which will be used by your core logic. Let’s also imagine that you want to adapt an external
asynchronous reset into this core clock domain to a synchronous reset source.

The following imports will be used in code examples on this page:

import spinal.core._
import spinal.lib._

The PLL BlackBox definition

This is how to define the PLL BlackBox:

class PLL extends BlackBox{
val io = new Bundle{

val clkIn = in Bool(Q)
val clkOut = out Bool()
val isLocked = out Bool()

}

(continues on next page)

200 Chapter 13. Examples

SpinalHDL Documentation

(continued from previous page)

noloPrefix()

}

This will correspond to the following VHDL component:

component PLL is

port(
clkIn : in std_logic;
clkOut : out std_logic;
isLocked : out std_logic
Js

end component;

TopLevel definition

This is how to define your TopLevel which instantiates the PLL, creates the new ClockDomain, and also adapts
the asynchronous reset input to a synchronous reset:

class TopLevel extends Component{
val io = new Bundle {
val aReset = in Bool()
val clk100Mhz in Bool()
val result out UInt(4 bits)
}

// Create an Area to manage all clocks and reset things
val clkCtrl = new Area {

//Instanciate and drive the PLL

val pll = new PLL

pll.io.clkIn := io.clk100Mhz

//Create a new clock domain named 'core
val coreClockDomain = ClockDomain.internal (

name = "core",
frequency = FixedFrequency(200 MHz) // This frequency specification can be used
) // by coreClockDomain users to do some.
—calculations

//Drive clock and reset signals of the coreClockDomain previously created

coreClockDomain.clock := pll.io.clkOut
coreClockDomain.reset := ResetCtrl.asyncAssertSyncDeassert(
input = io.aReset || ! pll.io.isLocked,
clockDomain = coreClockDomain
)

3

//Create a ClockingArea which will be under the effect of the clkCtrl.
—>coreClockDomain
val core = new ClockingArea(clkCtrl.coreClockDomain) {
//Do your stuff which use coreClockDomain here
val counter = Reg(UInt(4 bits)) init(0)
counter := counter + 1
io.result := counter

13.1. Simple ones 201

SpinalHDL Documentation

13.1.7 RGB to gray

Let’s imagine a component that converts an RGB color into a gray one, and then writes it into external memory.

i0 name Direction Description

clear in Clear all internal registers

r,g,b in Color inputs

wr out Memory write

address out Memory address, incrementing each cycle
data out Memory data, gray level

class RgbToGray extends Component{
val io = new Bundle{
val clear = in Bool()
val r,g,b = in UInt(8 bits)

val wr = out Bool()
val address = out UInt(16 bits)
val data = out UInt(8 bits)

}

def coef(value : Ulnt,by : Float) : UInt = (value * U((255*by).toInt,8 bits) >> 8)
val gray = RegNext(

coef(io.r,0.3f) +

coef(io.g,0.4f) +

coef(io.b,0.3f)
)

val address = CounterFreeRun(stateCount = 1 << 16)
io.address := address

io.wr := True

io.data := gray

when(io.clear){

gray := 0
address.clear()
io.wr := False

13.1.8 Sinus rom

Let’s imagine that you want to generate a sine wave and also have a filtered version of it (which is completely
useless in practical, but let’s do it as an example).

Parameters name Type Description
resolutionWidth Int Number of bits used to represent numbers
sampleCount Int Number of samples in a sine period

202 Chapter 13. Examples

SpinalHDL Documentation

0] Di- Type Description
name | rec-
tion
sin out SInt(resolutionWidth bits) Output which plays the sine wave
sin- out SInt(resolutionWidth bits) Output which plays the filtered version of the sine
Fil-
tred

So let’s define the Component:

class TopLevel(resolutionWidth : Int,sampleCount : Int) extends Component {
val io = new Bundle {
val sin = out SInt(resolutionWidth bits)
val sinFiltred = out SInt(resolutionWidth bits)
}
// Here will come the logic implementation

}

To play the sine wave on the sin output, you can define a ROM which contain all samples of a sine period (tt
could be just a quarter, but let’s do things by the simplest way).
Then you can read that ROM with an phase counter and this will generate your sine wave.

//Function used to generate the rom (later)

def sinTable = for(sampleIndex <- ® until sampleCount) yield {
val sinValue = Math.sin(2 * Math.PI * sampleIndex / sampleCount)
S((sinValue * ((l<<resolutionWidth)/2-1)).toInt,resolutionWidth bits)

}
val rom = Mem(SInt(resolutionWidth bits),initialContent = sinTable)
val phase = Reg(UInt(log2Up(sampleCount) bits)) init(0)

phase := phase + 1

io.sin := rom.readSync(phase)

Then to generate sinFiltred, you can for example use a first order low pass filter implementation:

io.sinFiltred := RegNext(io.sinFiltred - (io.sinFiltred >> 5) + (io.sin >> 5)).
—init(0)

Here is the complete code:

class TopLevel(resolutionWidth : Int,sampleCount : Int) extends Component {
val io = new Bundle {
val sin = out SInt(resolutionWidth bits)
val sinFiltred = out SInt(resolutionWidth bits)

3

def sinTable = for(sampleIndex <- 0 until sampleCount) yield {
val sinValue = Math.sin(2 * Math.PI * sampleIndex / sampleCount)
S((sinValue * ((l<<resolutionWidth)/2-1)).toInt,resolutionWidth bits)

3

val rom = Mem(SInt(resolutionWidth bits),initialContent = sinTable)
val phase = Reg(UInt(log2Up(sampleCount) bits)) init(0)

(continues on next page)

13.1. Simple ones 203

SpinalHDL Documentation

(continued from previous page)

phase := phase + 1

io.sin := rom.readSync(phase)
io.sinFiltred := RegNext(io.sinFiltred - (io.sinFiltred >> 5) + (io.sin >> 5)).
—init(0)

}

13.2 Intermediates ones

13.2.1 Fractal calculator

Introduction

This example will show a simple implementation (without optimization) of a Mandelbrot fractal calculator by using
data streams and fixed point calculations.

Specification

The component will receive one Stream of pixel tasks (which contain the XY coordinates in the Mandelbrot space)
and will produce one Stream of pixel results (which contain the number of iterations done for the corresponding
task).

Let’s specify the IO of our component:

10 Di- Type | Description

Name| rec-
tion

cmd slave | Stream|[MRxelTdskXY coordinates to process

sp mas- | Stream|[FRetiRedtdthtion count needed for the corresponding cmd transaction
ter

Let’s specify the PixelTask Bundle:

Element Type Description

Name

X SFix Coordinate in the Mandelbrot space
y SFix Coordinate in the Mandelbrot space

Let’s specify the PixelResult Bundle:

Element Type Description
Name
iteration Ulnt Number of iterations required to solve the Mandelbrot coordinates

204 Chapter 13. Examples

SpinalHDL Documentation

Elaboration parameters (Generics)

Let’s define the class that will provide construction parameters of our system:

case class PixelSolverGenerics(fixAmplitude : Int,
fixResolution : Int,
iterationLimit : Int){
val iterationWidth = log2Up(iterationLimit+1)
def iterationType = UInt(iterationWidth bits)
def fixType = SFix(
peak = fixAmplitude exp,
resolution = fixResolution exp

)

Note: iterationType and fixType are functions that you can call to instantiate new signals. It’s like a typedef in C.

Bundle definition

case class PixelTask(g : PixelSolverGenerics) extends Bundle{
val x,y = g.fixType
}

case class PixelResult(g : PixelSolverGenerics) extends Bundle{
val iteration = g.iterationType

}

Component implementation

And now the implementation. The one below is a very simple one without pipelining / multi-threading.

case class PixelSolver(g : PixelSolverGenerics) extends Component{
val io = new Bundle{
val cmd = slave Stream(PixelTask(g))
val rsp = master Stream(PixelResult(g))

}
import g._

//Define states
val x,y = Reg(fixType) init(0)
val iteration = Reg(iterationType) init(0)

//Do some shared calculation
val xx = x*x
val yy = y*y
val xy = x*y

//Apply default assignment

io.cmd.ready := False
io.rsp.valid := False
io.rsp.iteration := iteration

(continues on next page)

13.2. Intermediates ones

205

SpinalHDL Documentation

(continued from previous page)

when(io.cmd.valid) {
//Is the mandelbrot iteration done ?

when(xx + yy >= 4.0 || iteration === iterationLimit) {
io.rsp.valid := True
when(io.rsp.ready){
io.cmd.ready := True
x =0
y =0
iteration := 0
}
} otherwise {
X := (xx - yy + io.cmd.x).truncated
y = ((xy) << 1) + io.cmd.y).truncated
iteration := iteration + 1
}

13.2.2 UART
Specification

This UART controller tutorial is based on this implementation.
This implementation is characterized by:
¢ ClockDivider/Parity/StopBit/Datalength configs are set by the component inputs.
* RXD input is filtered by using a sampling window of N samples and a majority vote.

Interfaces of this UartCtrl are:

Name | Type | Description
config | UartC- | Give all configurations to the controller
trl-
Con-
fig
write | Stream[BReft used by the system to give transmission order to the controller
read Flow[Bitdort used by the controller to notify the system about a successfully received frame
uart Uart Uart interface with rxd / txd

206 Chapter 13. Examples

https://github.com/SpinalHDL/SpinalHDL/tree/master/lib/src/main/scala/spinal/lib/com/uart

SpinalHDL Documentation

Data structures

Before implementing the controller itself we need to define some data structures.

Controller construction parameters

Namé&ypeDescription
dataWhat | Maximum number of data bits that could be sent using a single UART frame

e

o

=

=
[

clo¢kint | Number of bits that the clock divider has

pret Int| Number of samples to drop at the beginning of the sampling window

san}-Int | Number of samples use at the middle of the window to get the filtered RXD value

post-Int | Number of samples to drop at the end of the sampling window

To make the implementation easier let’'s assume that preSamplingSize + samplingSize +
postSamplingSize is always a power of two.

Instead of adding each construction parameters (generics) to UartCtrl one by one, we can group them inside a
class that will be used as single parameter of UartCtrl.

case class UartCtrlGenerics(dataWidthMax: Int = 8,
clockDividerWidth: Int = 20, // baudrate = Fclk /.
—rxSamplePerBit / clockDividerlWidth
preSamplingSize: Int = 1,
samplingSize: Int = 5,
postSamplingSize: Int = 2) {
val rxSamplePerBit = preSamplingSize + samplingSize + postSamplingSize
assert(isPow2 (rxSamplePerBit))
if ((samplingSize % 2) == 0)
SpinalWarning(s"It's not nice to have a odd samplingSize value (because of the.
—majority vote)")

}

UART bus

Let’s define a UART bus without flow control.

case class Uart() extends Bundle with IMasterSlave {
val txd = Bool()
val rxd = Bool()

override def asMaster(): Unit = {
out (txd)

(continues on next page)

13.2. Intermediates ones 207

SpinalHDL Documentation

(continued from previous page)

in(rxd)
}
}

UART configuration enums

Let’s define parity and stop bit enumerations.

object UartParityType extends SpinalEnum(sequancial) {
val NONE, EVEN, ODD = newElement()
}

object UartStopType extends SpinalEnum(sequancial) {

val ONE, TWO = newElement ()

def toBitCount(that : T) : UInt = (that === ONE) 7 U"0" | U"1"
}

UartCtrl configuration Bundles

Let’s define Bundles that will be used as 10 elements to setup UartCtrl.

case class UartCtrlFrameConfig(g: UartCtrlGenerics) extends Bundle {
val datalength = UInt(log2Up(g.dataWidthMax) bit) //Bit count = datalLength + 1
val stop UartStopType()
val parity = UartParityType()

}

case class UartCtrlConfig(g: UartCtrlGenerics) extends Bundle {

val frame = UartCtrlFrameConfig(g)

val clockDivider = UInt (g.clockDividerWidth bit) //see UartCtrlGenerics.
—clockDividerWidth for calculation

def setClockDivider(baudrate : Double,clkFrequency : Double = ClockDomain.current.
- frequency.getValue) : Unit = {
clockDivider := (clkFrequency / baudrate / g.rxSamplePerBit).toInt
}
}

Implementation

In UartCtrl, 3 things will be instantiated:
* One clock divider that generates a tick pulse at the UART RX sampling rate.
¢ One UartCtrlTx Component

¢ One UartCtrlRx Component

208 Chapter 13. Examples

SpinalHDL Documentation

UartCtriTx

The interfaces of this Component are the following :

Name | Type | Description
con- UartC- | Contains data bit width count and party/stop bits configurations
figFrame trl-

Frame-

Con-

fig
sam- Bool Time reference that pulses rxSamplePerBit times per UART baud
plingTic¢k
write | Stream[BRsft used by the system to give transmission orders to the controller
txd Bool UART txd pin

Let’s define the enumeration that will be used to store the state of UartCtrlTx:

object UartCtrlTxState extends SpinalEnum {
val IDLE, START, DATA, PARITY, STOP = newElement()

}

Let’s define the skeleton of UartCtrlTx:

class UartCtrlTx(g : UartCtrlGenerics) extends Component {
import g._

val io = new Bundle {
val configFrame = in(UartCtrlFrameConfig(g))
val samplingTick = in Bool()
val write = slave Stream (Bits(dataWidthMax bit))
val txd = out Bool

}

// Provide one clockDivider.tick each rxSamplePerBit pulses of io.samplingTick
// Used by the stateMachine as a baud rate time reference
val clockDivider = new Area {

val counter = Reg(UInt(log2Up(rxSamplePerBit) bits)) init(0)

val tick = False

}

// Count up each clockDivider.tick, used by the state machine to count up data bits.
—and stop bits
val tickCounter = new Area {
val value = Reg(UInt(Math.max(dataWidthMax, 2) bit))
def reset() = value := 0

3

val stateMachine = new Area {
import UartCtrlTxState._

val state = RegInit(IDLE)
val parity = Reg(Bool)
val txd = True

switch(state) {

(continues on next page)

13.2. Intermediates ones 209

SpinalHDL Documentation

(continued from previous page)

}
}

io.txd := RegNext(stateMachine.txd) init(True)

And here is the complete implementation:

class UartCtrlTx(g : UartCtrlGenerics) extends Component {
import g._

val io = new Bundle {
val configFrame = in(UartCtrlFrameConfig(g))
val samplingTick = in Bool
val write slave Stream (Bits(dataWidthMax bit))
val txd = out Bool
}

// Provide one clockDivider.tick each rxSamplePerBit pulse of io.samplingTick
// Used by the stateMachine as a baud rate time reference
val clockDivider = new Area {
val counter = Reg(UInt(log2Up(rxSamplePerBit) bits)) init(0)
val tick = False
when(io.samplingTick) {
counter := counter - 1
tick := counter === 0
}
}

// Count up each clockDivider.tick, used by the state machine to count up data bits.
—and stop bits
val tickCounter = new Area {
val value = Reg(UInt(Math.max(dataWidthMax, 2) bit))
def reset() = value := 0

when(clockDivider.tick) {
value := value + 1
}
}

val stateMachine = new Area {
import UartCtrlTxState._

val state = RegInit(IDLE)
val parity = Reg(Bool)
val txd = True

when(clockDivider.tick) {
parity := parity A txd
}

io.write.ready := False
switch(state) {
is(IDLE){
when(io.write.valid && clockDivider.tick){

(continues on next page)

210 Chapter 13. Examples

SpinalHDL Documentation

(continued from previous page)

state := START
}
}
is(START) {
txd := False
when(clockDivider.tick) {
state := DATA
parity := io.configFrame.parity === UartParityType.ODD
tickCounter.reset()
}
}
is(DATA) {
txd := io.write.payload(tickCounter.value)
when(clockDivider.tick) {
when(tickCounter.value === io.configFrame.datalLength) {
io.write.ready := True
tickCounter.reset()
when(io.configFrame.parity === UartParityType.NONE) {
state := STOP
} otherwise {
state := PARITY
}
}
}
}
is(PARITY) {
txd := parity
when(clockDivider.tick) {
state := STOP
tickCounter.reset()

}
}
is(STOP) {
when(clockDivider.tick) {
when(tickCounter.value === toBitCount(io.configFrame.stop)) {
state := jo.write.valid ? START | IDLE
}
}
}

io.txd := RegNext(stateMachine.txd, True)

13.2. Intermediates ones 211

SpinalHDL Documentation

UartCtriRx

The interfaces of this Component are the following:

Name | Type | Description
con- UartC- | Contains data bit width and party/stop bits configurations
figFrame trl-
Frame-
Con-
fig
sam- Bool Time reference that pulses rxSamplePerBit times per UART baud
plingTic¢k
read Flow[Bitfort used by the controller to notify the system about a successfully received frame
rxd Bool UART rxd pin, not synchronized with the current clock domain

Let’s define the enumeration that will be used to store the state of UartCtrlTx:

object UartCtrlRxState extends SpinalEnum {
val IDLE, START, DATA, PARITY, STOP = newElement()
}

Let’s define the skeleton of the UartCtrlRx :

class UartCtrlRx(g : UartCtrlGenerics) extends Component {
import g._
val io = new Bundle {
val configFrame = in(UartCtrlFrameConfig(g))
val samplingTick = in Bool
val read master Flow (Bits(dataWidthMax bit))
val rxd = in Bool

}

// Implement the rxd sampling with a majority vote over samplingSize bits
// Provide a new sampler.value each time sampler.tick is high
val sampler = new Area {

val syncroniser = BufferCC(io.rxd)

val samples = History(that=syncroniser,when=io.samplingTick,
—length=samplingSize)

val value = RegNext(MajorityVote(samples))

val tick = RegNext(io.samplingTick)

}

// Provide a bitTimer.tick each rxSamplePerBit

// reset() can be called to recenter the counter over a start bit.

val bitTimer = new Area {
val counter = Reg(UInt(log2Up(rxSamplePerBit) bit))
def reset() = counter := preSamplingSize + (samplingSize - 1) / 2 - 1)
val tick = False

3

// Provide bitCounter.value that count up each bitTimer.tick, Used by the state.
—-machine to count data bits and stop bits
// reset() can be called to reset it to zero
val bitCounter = new Area {
val value = Reg(UInt(Math.max(dataWidthMax, 2) bit))
def reset() = value := 0

(continues on next page)

212 Chapter 13. Examples

SpinalHDL Documentation

(continued from previous page)

}

val stateMachine = new Area {
import UartCtrlRxState._

val state = RegInit(IDLE)
val parity = Reg(Bool)
val shifter = Reg(io.read.payload)

switch(state) {

}

And here is the complete implementation:

class UartCtrlRx(g : UartCtrlGenerics) extends Component {
import g._
val io = new Bundle {
val configFrame = in(UartCtrlFrameConfig(g))
val samplingTick = in Bool
val read master Flow (Bits(dataWidthMax bit))
val rxd = in Bool

3

// Implement the rxd sampling with a majority vote over samplingSize bits
// Provide a new sampler.value each time sampler.tick is high
val sampler = new Area {

val syncroniser = BufferCC(io.rxd)

val samples = History(that=syncroniser,when=io.samplingTick,
—length=samplingSize)

val value = RegNext(MajorityVote(samples))

val tick = RegNext(io.samplingTick)

}

// Provide a bitTimer.tick each rxSamplePerBit
// reset() can be called to recenter the counter over a start bit.
val bitTimer = new Area {
val counter = Reg(UInt(log2Up(rxSamplePerBit) bit))
def reset() = counter := preSamplingSize + (samplingSize - 1) / 2 - 1
val tick = False
when(sampler.tick) {

counter := counter - 1
when(counter === 0) {
tick := True
}
}

}

// Provide bitCounter.value that count up each bitTimer.tick, Used by the state.
—machine to count data bits and stop bits
// reset() can be called to reset it to zero
val bitCounter = new Area {
val value = Reg(UInt(Math.max(dataWidthMax, 2) bit))

(continues on next page)

13.2. Intermediates ones 213

SpinalHDL Documentation

(continued from previous page)

def reset() = value := 0

when(bitTimer.tick) {
value := value + 1
}
}

val stateMachine = new Area {
import UartCtrlRxState._

val state = RegInit(IDLE)
val parity Reg(Bool)
val shifter = Reg(io.read.payload)

//Parity calculation
when(bitTimer.tick) {

parity := parity A sampler.value
}
io.read.valid := False
switch(state) {
is(IDLE) {
when(sampler.value === False) {

state := START
bitTimer.reset()
}
}
is(START) {
when(bitTimer.tick) {
state := DATA
bitCounter.reset()
parity := io.configFrame.parity === UartParityType.ODD
when(sampler.value === True) {
state := IDLE
}
}
}
is(DATA) {
when(bitTimer.tick) {
shifter(bitCounter.value) := sampler.value
when(bitCounter.value === io.configFrame.datalLength) {
bitCounter.reset()
when(io.configFrame.parity === UartParityType.NONE) {
state := STOP
} otherwise {
state := PARITY
}
}
}
}
is(PARITY) {
when(bitTimer.tick) {
state := STOP
bitCounter.reset()
when(parity =/= sampler.value) {
state := IDLE

(continues on next page)

214 Chapter 13. Examples

SpinalHDL Documentation

(continued from previous page)

}
}
}
is(STOP) {
when(bitTimer.tick) {
when(!sampler.value) {
state := IDLE
}.elsewhen(bitCounter.value === toBitCount(io.configFrame.stop)) {
state := IDLE
io.read.valid := True

}
}
}
}
io.read.payload := stateMachine.shifter

}

UartCtrl

Let’s write UartCtrl that instantiates the UartCtrlRx and UartCtrlTx parts, generate the clock divider logic,
and connect them to each other.

class UartCtrl(g : UartCtrlGenerics = UartCtrlGenerics()) extends Component {
val io = new Bundle {
val config = in(UartCtrlConfig(g))
val write = slave(Stream(Bits(g.dataWidthMax bit)))

val read = master(Flow(Bits(g.dataWidthMax bit)))
val uart = master(Uart())

}

val tx = new UartCtrlTx(g)

val rx = new UartCtrlRx(g)

//Clock divider used by RX and TX

val clockDivider = new Area {
val counter = Reg(UInt(g.clockDividerWidth bits)) init(0)
val tick = counter ===

counter := counter - 1
when(tick) {
counter := io.config.clockDivider
}
}
tx.io.samplingTick := clockDivider.tick
rx.io.samplingTick := clockDivider.tick

tx.io.configFrame := io.config.frame
rx.io.configFrame := io.config.frame

tx.io.write << io.write
rx.io.read >> io.read

io.uart.txd <> tx.io.txd

(continues on next page)

13.2. Intermediates ones 215

SpinalHDL Documentation

(continued from previous page)

io.uart.rxd <> rx.io.rxd

Simple usage

To synthesize a UartCtrl as 115200-N-8-1:

val uvartCtrl: UartCtrl = UartCtrl(
config = UartCtrlInitConfig(
baudrate = 115200,
dataLength = 7, // 8 bits
parity = UartParityType.NONE,
stop = UartStopType.ONE

If you are using txd pin only:

uartCtrl.io.uart.rxd := True // High is the idle state for UART
txd := uvartCtrl.io.uart.txd

On the contrary, if you are using rxd pin only:

val uvartCtrl: UartCtrl = UartCtrl(

config = UartCtrlInitConfig(
baudrate = 115200,
datalength = 7, // 8 bits
parity = UartParityType.NONE,
stop = UartStopType.ONE

)

readonly = true

)

Example with test bench

Here is a top level example that does the followings things:
* Instantiate UartCtrl and set its configuration to 921600 baud/s, no parity, 1 stop bit.
» Each time a byte is received from the UART, it writes it on the leds output.

» Every 2000 cycles, it sends the switches input value to the UART.

class UartCtrlUsageExample extends Component{
val io = new Bundle{
val uart = master(Uart())
val switchs = in Bits(8 bits)
val leds = out Bits(8 bits)
}

val uvartCtrl = new UartCtrl()
uartCtrl.io.config.setClockDivider(921600)
uartCtrl.io.config.frame.datalength := 7 //8 bits
uartCtrl.io.config. frame.parity := UartParityType.NONE
uartCtrl.io.config.frame.stop := UartStopType.ONE
uartCtrl.io.uart <> io.uart

(continues on next page)

216 Chapter 13. Examples

SpinalHDL Documentation

(continued from previous page)

//Assign io.led with a register loaded each time a byte is received
io.leds := uartCtrl.io.read.toReg()

//Write the value of switch on the uart each 2000 cycles
val write = Stream(Bits(8 bits))

write.valid := CounterFreeRun(2000).willOverflow
write.payload := io.switchs

write >-> uartCtrl.io.write

object UartCtrlUsageExample{
def main(args: Array[String]) {
SpinalVhdl (new UartCtrlUsageExample,
—~defaultClockDomainFrequency=FixedFrequency(50e6))
}
}

The following example is just a “mad one” but if you want to send a 0x55 header before sending the value of
switches, you can replace the write generator of the preceding example by:

val write = Stream(Fragment(Bits(8 bits)))

write.valid := CounterFreeRun(4000).willOverflow
write.fragment := io.switchs
write.last := True

write.stage().insertHeader(0x55).toStreamOfFragment >> uartCtrl.io.write

Here you can get a simple VHDL testbench for this small UartCtrlUsageExample.

Bonus: Having fun with Stream

If you want to queue data received from the UART:

val uvartCtrl = new UartCtrl()
val queuedReads = uartCtrl.io.read.toStream.queue(16)

If you want to add a queue on the write interface and do some flow control:

val uvartCtrl = new UartCtrl()

val writeCmd = Stream(Bits(8 bits))

val stopIt = Bool

writeCmd.queue(16).haltWhen(stopIt) >> uartCtrl.io.write

13.2.3 VGA

Introduction

VGA interfaces are becoming an endangered species, but implementing a VGA controller is still a good exercise.
An explanation about the VGA protocol can be found here.

This VGA controller tutorial is based on this implementation.

13.2. Intermediates ones 217

https://github.com/SpinalHDL/SpinalHDL/blob/master/tester/src/test/resources/UartCtrlUsageExample_tb.vhd
http://www.xess.com/blog/vga-the-rest-of-the-story/
https://github.com/SpinalHDL/SpinalHDL/blob/master/lib/src/main/scala/spinal/lib/graphic/vga/VgaCtrl.scala

SpinalHDL Documentation

Data structures

Before implementing the controller itself we need to define some data structures.

RGB color

First, we need a three channel color structure (Red, Green, Blue). This data structure will be used to feed the
controller with pixels and also will be used by the VGA bus.

case class RgbConfig(rWidth : Int,gWidth : Int,bWidth : Int){
def getWidth = rWidth + gWidth + bWidth

}

case class Rgb(c: RgbConfig) extends Bundle{

val r = UInt(c.rWidth bit)
val g = UInt(c.gWidth bit)
val b = UInt(c.bWidth bit)
}
VGA bus
io Driver | Description
name
vSync | mas- Vertical synchronization, indicate the beginning of a new frame
ter
hSync | mas- Horizontal synchronization, indicate the beginning of a new line
ter
col- mas- High when the interface is in the visible part
orEn ter
color mas- Carry the color, don’t care when colorEn is low
ter

case class Vga (rgbConfig: RgbConfig) extends Bundle with IMasterSlave{
val vSync =
val hSync =

val colorEn
val color

Bool ()
Bool ()

Bool()
= Rgb(rgbConfig)

override def asMaster() : Unit = this.asOutput()

}

This Vga Bundle uses the IMasterSlave trait, which allows you to create master/slave VGA interfaces using the

following:

master(Vga(...))
slave(Vga(...))

218

Chapter 13. Examples

SpinalHDL Documentation

VGA timings

The VGA interface is driven by using 8 different timings. Here is one simple example of a Bundle that is able to
carry them.

case class VgaTimings(timingsWidth: Int) extends Bundle {
val hSyncStart = UInt(timingsWidth bits)

val hSyncEnd = UInt(timingsWidth bits)
val hColorStart = UInt(timingsWidth bits)
val hColorEnd = UInt(timingsWidth bits)
val vSyncStart = UInt(timingsWidth bits)
val vSyncEnd = UInt(timingsWidth bits)
val vColorStart = UInt(timingsWidth bits)
val vColorEnd = UInt(timingsWidth bits)

But this not a very good way to specify it because it is redundant for vertical and horizontal timings.

Let’s write it in a clearer way:

case class VgaTimingsHV(timingsWidth: Int) extends Bundle {
val colorStart = UInt(timingsWidth bit)
val colorEnd = UInt(timingsWidth bit)
val syncStart = UInt(timingsWidth bit)
val syncEnd UInt(timingsWidth bit)

}

case class VgaTimings(timingsWidth: Int) extends Bundle {
val h = VgaTimingsHV(timingsWidth)
val v = VgaTimingsHV(timingsWidth)

}

Then we could add some some functions to set these timings for specific resolutions and frame rates:

case class VgaTimingsHV(timingsWidth: Int) extends Bundle {
val colorStart = UInt(timingsWidth bit)

val colorEnd = UInt(timingsWidth bit)
val syncStart = UInt(timingsWidth bit)
val syncEnd = UInt(timingsWidth bit)

}

case class VgaTimings(timingsWidth: Int) extends Bundle {
val h = VgaTimingsHV(timingsWidth)
val v = VgaTimingsHV(timingsWidth)

def setAs_h640_v480_r60: Unit = {
.syncStart := 96 - 1

.syncEnd := 800 - 1
.colorStart := 96 + 16 - 1
.colorEnd := 800 - 48 - 1
.syncStart = 2 - 1

.syncEnd := 525 - 1
.colorStart := 2 + 10 - 1
.colorEnd := 525 - 33 - 1

< < < < B oPFo

def setAs_h64_v64_r60: Unit = {
h.syncStart := 96 - 1

(continues on next page)

13.2. Intermediates ones 219

SpinalHDL Documentation

(continued from previous page)

.syncEnd := 800 - 1

.syncStart (=2 - 1
.syncEnd := 525 - 1

< < << p>5

.colorStart := 96 + 16 - 1 + 288
.colorEnd := 800 - 48 - 1 - 288

.colorStart := 2 + 10 - 1 + 208
.colorEnd := 525 - 33 - 1 - 208

VGA Controller

Specification

io Di- Description
name | rec-
tion
soft- in Reset internal counters and keep the VGA interface inactive
Reset
tim- in Specify VGA horizontal and vertical timings
ings
pixels | slave | Stream of RGB colors that feeds the VGA controller
error | out High when the pixels stream is too slow
frameS4{ out High when a new frame starts
tart
vga mas- VGA interface
ter

The controller does not integrate any pixel buffering. It directly takes them from the pixels Stream and puts
them on the vga.color out at the right time. If pixels is not valid then error becomes high for one cycle.

Component and io definition

Let’s define a new VgaCtrl Component, which takes as RghConfig and timingsWidth as parameters. Let’s give

the bit width a default value of 12.

class VgaCtrl(rgbConfig: RgbConfig, timingsWidth: Int

val io = new Bundle {
val softReset = in Bool

val timings = in(VgaTimings(timingsWidth))
val pixels = slave Stream (Rgb(rgbConfig))

val error = out Bool
val frameStart = out Bool

val vga = master(Vga(rgbConfig))

12) extends Component {

220

Chapter 13. Examples

SpinalHDL Documentation

Horizontal and vertical logic

The logic that generates horizontal and vertical synchronization signals is quite the same. It kind of resembles
~PWM-~. The horizontal one counts up each cycle, while the vertical one use the horizontal syncronization signal
as to increment.

Let’s define HVArea, which represents one ~PWM-~ and then instantiate it two times: one for both horizontal and
vertical syncronization.

class VgaCtrl(rgbConfig: RgbConfig, timingsWidth: Int = 12) extends Component {
val io = new Bundle {...}

case class HVArea(timingsHV: VgaTimingsHV, enable: Bool) extends Area {
val counter = Reg(UInt(timingsWidth bit)) init(0)

val syncStart = counter === timingsHV.syncStart
val syncEnd = counter === timingsHV.syncEnd
val colorStart = counter === timingsHV.colorStart
val colorEnd = counter === timingsHV.colorEnd

when(enable) {

counter := counter + 1
when(syncEnd) {
counter := 0
}
}
val sync = RegInit(False) setWhen(syncStart) clearWhen(syncEnd)

val colorEn = RegInit(False) setWhen(colorStart) clearWhen(colorEnd)

when(io.softReset) {

counter := 0
sync := False
colorEn := False
}
}

val h = HVArea(io.timings.h, True)
val v = HVArea(io.timings.v, h.syncEnd)

As you can see, it’s done by using Area. This is to avoid the creation of a new Component which would have been
much more verbose.

Interconnections

Now that we have timing generators for horizontal and vertical synchronization, we need to drive the outputs.

class VgaCtrl(rgbConfig: RgbConfig, timingsWidth: Int = 12) extends Component {
val io = new Bundle {...}

case class HVArea(timingsHV: VgaTimingsHV, enable: Bool) extends Area {...}
val h = HVArea(io.timings.h, True)
val v = HVArea(io.timings.v, h.syncEnd)

val colorEn = h.colorEn && v.colorEn
io.pixels.ready := colorEn
io.error := colorEn && ! io.pixels.valid

(continues on next page)

13.2. Intermediates ones 221

SpinalHDL Documentation

(continued from previous page)

io.frameStart := v.syncEnd
io.vga.hSync := h.sync
io.vga.vSync := v.sync
io.vga.colorEn := colorEn
io.vga.color := io.pixels.payload
}
Bonus

The VgaCtrl that was defined above is generic (not application specific). We can imagine a case where the system
provides a Stream of Fragment of RGB, which means the system transmits pixels between start/end of picture
indications.

In this case we can automatically manage the softReset input by asserting it when an error occurs, then wait
for the end of the current pixels picture to deassert error.

Let’s add a function to VgaCtrl that can be called from the parent component to feed VgaCtrl by using this
Stream of Fragment of RGB.

class VgaCtrl(rgbConfig: RgbConfig, timingsWidth: Int = 12) extends Component {

def feedWith(that : Stream[Fragment[Rgb]]): Unit ={
io.pixels << that.toStreamOfFragment

val error = RegInit(False)
when(io.error) {
error := True
}
when(that.isLast){
error := False

}

io.softReset := error
when(error) {
that.ready := True
}
}
}

13.3 Advanced ones

13.3.1 JTAG TAP

Introduction

Important: The goal of this page is to show the implementation of a JTAG TAP (a slave) by a non-conventional
way.

Important:

222 Chapter 13. Examples

SpinalHDL Documentation

This implementation is not a simple one, it mix object oriented programming, abstract interfaces decoupling,
hardware generation and hardware description.

Of course a simple JTAG TAP implementation could be done only with a simple hardware description, but the
goal here is really to going forward and creating an very reusable and extensible JTAG TAP generator

Important: This page will not explains how JTAG work. A good tutorial could be find there.

One big difference between commonly used HDL and Spinal, is the fact that SpinalHDL allow you to define
hardware generators/builders. It’s very different than describing hardware. Let’s take a look into the example
bellow because the difference between generate/build/describing could seem “playing with word” or could be
interpreted differently.

The example bellow is a JTAG TAP which allow the JTAG master to read switchs/keys inputs and write leds
outputs. This TAP could also be recognized by a master by using the UID 0x87654321.

class SimpleJtagTap extends Component {
val io = new Bundle {

val jtag = slave(Jtag(Q))

val switchs = in Bits(8 bit)
val keys = in Bits(4 bit)
val leds = out Bits(8 bit)

val tap = new JtagTap(io.jtag, 8)
val idcodeArea = tap.idcode(B"x87654321") (instructionId=4)

val switchsArea = tap.read(io.switchs) (instructionId=5)
val keysArea = tap.read(io.keys) (instructionId=6)
val ledsArea = tap.write(io.leds) (instructionId=7)

As you can see, a JtagTap is created but then some Generator/Builder functions (idcode,read,write) are called to
create each JTAG instruction. This is what i call “Hardware generator/builder”, then these Generator/Builder are
used by the user to describing an hardware. And there is the point, in commonly HDL you can only describe your
hardware, which imply many donkey job.

This JTAG TAP tutorial is based on this implementation.

JTAG bus

First we need to define a JTAG bus bundle.

case class Jtag() extends Bundle with IMasterSlave {
val tms = Bool()
val tdi = Bool()
val tdo = Bool()

override def asMaster() : Unit = {
out(tdi, tms)
in(tdo)
}
}

As you can see this bus don’t contain the TCK pin because it will be provided by the clock domain.

13.3. Advanced ones 223

https://www.fpga4fun.com/JTAG.html
https://github.com/SpinalHDL/SpinalHDL/tree/master/lib/src/main/scala/spinal/lib/com/jtag

SpinalHDL Documentation

JTAG state machine

Let’s define the JTAG state machine as explained here

object JtagState extends SpinalEnum {
val RESET, IDLE,
IR_SELECT, IR_CAPTURE, IR_SHIFT, IR_EXIT1, IR_PAUSE, IR_EXIT2, IR_UPDATE,
DR_SELECT, DR_CAPTURE, DR_SHIFT, DR_EXIT1, DR_PAUSE, DR_EXIT2, DR_UPDATE =,
—newElement ()

}

class JtagFsm(jtag: Jtag) extends Area {
import JtagState._
val stateNext = JtagState()
val state = RegNext(stateNext) randBoot()

stateNext := state.mux(
default -> (jtag.tms ? RESET | IDLE), //RESET
IDLE -> (jtag.tms ? DR_SELECT | IDLE),
IR_SELECT -> (jtag.tms ? RESET | IR_CAPTURE),
IR_CAPTURE -> (jtag.tms ? IR_EXIT1 | IR_SHIFT),
IR_SHIFT -> (jtag.tms ? IR_EXIT1 | IR_SHIFT),
IR_EXIT1 -> (jtag.tms 7 IR_UPDATE | IR_PAUSE),
IR_PAUSE -> (jtag.tms ? IR_EXIT2 | IR_PAUSE),
IR_EXIT2 -> (jtag.tms ? IR_UPDATE | IR_SHIFT),
IR_UPDATE -> (jtag.tms ? DR_SELECT | IDLE),
DR_SELECT -> (jtag.tms ? IR_SELECT | DR_CAPTURE),
DR_CAPTURE -> (jtag.tms ? DR_EXIT1 | DR_SHIFT),
DR_SHIFT -> (jtag.tms ? DR_EXIT1 | DR_SHIFT),
DR_EXIT1 -> (jtag.tms ? DR_UPDATE | DR_PAUSE),
DR_PAUSE -> (jtag.tms ? DR_EXIT2 | DR_PAUSE),
DR_EXIT2 -> (jtag.tms 7 DR_UPDATE | DR_SHIFT),
DR_UPDATE -> (jtag.tms ? DR_SELECT | IDLE)

Note: The randBoot() on state make it initialized with a random state. It’s only for simulation purpose.

JTAG TAP

Let’s implement the core of the JTAG TAP, without any instruction, just the base manage the instruction register
(IR) and the bypass.

class JtagTap(val jtag: Jtag, instructionWidth: Int) extends Areaf{
val fsm = new JtagFsm(jtag)
val instruction = Reg(Bits(instructionWidth bit))
val instructionShift = Reg(Bits(instructionWidth bit))
val bypass = Reg(Bool)

jtag.tdo := bypass

switch(fsm.state) {
is(JtagState.IR_CAPTURE) {
instructionShift := instruction

}

(continues on next page)

224 Chapter 13. Examples

https://www.fpga4fun.com/JTAG2.html

SpinalHDL Documentation

(continued from previous page)

is(JtagState.IR_SHIFT) {
instructionShift := (jtag.tdi ## instructionShift) >> 1
jtag.tdo := instructionShift.lsb

}

is(JtagState.IR_UPDATE) {
instruction := instructionShift

}

is(JtagState.DR_SHIFT) {
bypass := jtag.tdi
}
}
}

Jtag instructions

Now that the JTAG TAP core is done, we can think about how to implement JTAG instructions by an reusable way.

JTAG TAP class interface

First we need to define how an instruction could interact with the JTAG TAP core. We could of course directly
take the JtagTap area, but it’s not very nice because is some situation the JTAG TAP core is provided by another
IP (Altera virtual JTAG for example).

So let’s define a simple and abstract interface between the JTAG TAP core and instructions :

trait JtagTapAccess {
def getTdi : Bool()
def getTms : Bool(Q)
def setTdo(value : Bool) : Unit

def getState : JtagState.T
def getInstruction() : Bits
def setInstruction(value : Bits) : Unit

Then let’s the JtagTap implement this abstract interface :

class JtagTap(val jtag: Jtag, ...) extends Area with JtagTapAccess{

//JtagTapAccess impl

override def getTdi: Bool = jtag.tdi

override def setTdo(value: Bool): Unit = jtag.tdo := value
override def getTms: Bool = jtag.tms

override def getState: JtagState.T = fsm.state
override def getInstruction(): Bits = instruction
override def setInstruction(value: Bits): Unit = instruction := value

13.3. Advanced ones 225

SpinalHDL Documentation

Base class

Let’s define a wuseful base class for JTAG instruction that provide some callback (doCap-
ture/doShift/doUpdate/doReset) depending the selected instruction and the state of the JTAG TAP :

class JtagInstruction(tap: JtagTapAccess,val instructionId: Bits) extends Area {
def doCapture(): Unit = {}
def doShift(): Unit = {}
def doUpdate(): Unit = {}
def doReset(): Unit = {}

val instructionHit = tap.getInstruction === instructionId

Component.current.addPrePopTask(() => {
when(instructionHit) {

when(tap.getState === JtagState.DR_CAPTURE) {
doCapture()
}
when(tap.getState === JtagState.DR_SHIFT) {
doShift()
}
when(tap.getState === JtagState.DR_UPDATE) {
doUpdate()
}
}
when(tap.getState === JtagState.RESET) {
doReset ()
}
b
}
Note:

About the Component.current.addPrePopTask(...) :

This allow you to call the given code at the end of the current component construction. Because of object
oriented nature of Jtaglnstruction, doCapture, doShift, doUpdate and doReset should not be called before
children classes construction (because children classes will use it as a callback to do some logic)

Read instruction

Let’s implement an instruction that allow the JTAG to read a signal.

class JtagInstructionRead[T <: Data](data: T) (tap: JtagTapAccess,instructionId:.
—.Bits)extends JtagInstruction(tap,instructionId) {
val shifter = Reg(Bits(data.getBitsWidth bit))

override def doCapture(): Unit = {
shifter := data.asBits

3

override def doShift(): Unit = {
shifter := (tap.getTdi ## shifter) >> 1
tap.setTdo(shifter.1lsb)
}
}

226 Chapter 13. Examples

SpinalHDL Documentation

Write instruction

Let’s implement an instruction that allow the JTAG to write a register (and also read its current value).

class JtagInstructionWrite[T <: Data](data: T) (tap: JtagTapAccess,instructionId:.
—Bits) extends JtagInstruction(tap,instructionId) {
val shifter,store = Reg(Bits(data.getBitsWidth bit))

override def doCapture(): Unit = {
shifter := store

}

override def doShift(): Unit = {
shifter := (tap.getTdi ## shifter) >> 1
tap.setTdo(shifter.1lsb)

}

override def doUpdate(): Unit = {
store := shifter

}

data.assignFromBits(store)

Idcode instruction

Let’s implement the instruction that return a idcode to the JTAG and also, when a reset occur, set the instruction
register (IR) to it own instructionld.

class JtagInstructionIdcode[T <: Data](value: Bits)(tap: JtagTapAccess,.
—instructionId: Bits)extends JtagInstruction(tap,instructionId) {
val shifter = Reg(Bits(32 bit))

override def doShift(): Unit = {
shifter := (tap.getTdi ## shifter) >> 1
tap.setTdo(shifter.1lsb)

}

override def doReset(): Unit = {
shifter := value
tap.setInstruction(instructionId)

}
}

User friendly wrapper

Let’s add some user friendly function to the JtagTapAccess to make instructions instantiation easier .

trait JtagTapAccess {

def idcode(value: Bits) (instructionId: Bits) =
new JtagInstructionIdcode(value) (this,instructionId)

def read[T <: Data](data: T)(instructionId: Bits)
new JtagInstructionRead(data) (this,instructionId)

(continues on next page)

13.3. Advanced ones 227

SpinalHDL Documentation

(continued from previous page)

def write[T <: Data](data: T, cleanUpdate: Boolean = true, readable: Boolean =,
—true) (instructionId: Bits) =
new JtagInstructionWrite[T] (data,cleanUpdate,readable) (this,instructionId)

}

Usage demonstration

And there we are, we can now very easily create an application specific JTAG TAP without having to write any
logic or any interconnections.

class SimpleJtagTap extends Component {
val io = new Bundle {

val jtag = slave(Jtag(Q))

val switchs = in Bits(8 bit)
val keys = in Bits(4 bit)
val leds = out Bits(8 bit)

val tap = new JtagTap(io.jtag, 8)
val idcodeArea = tap.idcode(B"x87654321") (instructionId=4)

val switchsArea = tap.read(io.switchs) (instructionId=5)

val keysArea = tap.read(io.keys) (instructionId=6)

val ledsArea = tap.write(io.leds) (instructionId=7)
}

This way of doing things (Generating hardware) could also be applied to, for example, generating an
APB/AHB/AXI bus slave.

13.3.2 Memory mapped UART

Introduction

This example will take the UartCtrl component implemented in the previous example to create a memory mapped
UART controller.

Specification

The implementation will be based on the APB3 bus with a RX FIFO.

Here is the register mapping table:

Name Type Access | Address | Description
clockDi- | Ulnt RW 0 Set the UartCtrl clock divider
vider
frame UartCtrl- | RW 4 Set the datalength, the parity and the stop bit configuration
Frame-
Config
writeCmd | Bits W 8 Send a write command to UartCtrl
write- Bool R 8 Bit 0 => zero when a new writeCmd can be sent
Busy
read Bool /| R 12
Bits Bits 7 downto 0 => rx payload
Bit 31 => rx payload valid

228 Chapter 13. Examples

SpinalHDL Documentation

Implementation
For this implementation, the Apb3SlaveFactory tool will be used. It allows you to define a APB3 slave with a nice
syntax. You can find the documentation of this tool rhere.

First, we just need to define the Apb3Config that will be used for the controller. It is defined in a Scala object as
a function to be able to get it from everywhere.

object Apb3UartCtrl{
def getApb3Config = Apb3Config(

addressWidth = 4,

dataWWidth = 32

Then we can define a Apb3UartCtrl component which instantiates a UartCtrl and creates the memory mapping
logic between it and the APB3 bus:

%] clockDivider : Uint(20 bits)

) || datalength : Uint(3 bits) u
: . artCtrl
UartCtrIConflg :} parity : Enum . E tx : Bool
top : E N
(] stop : Enum {#] config uar g» =] uart .- . rx : Bool
valid : Bool B] write read [=] valid : Bool
Stream Bits(8 bit) % ready : |_3°°| T " " Flow Bits(8 bit) [#] data : Bits(8 bits)
[*] data : Bits(8 bits)
| valid : Bool i
Flow Bits(8 bit) { l . ¥ % valid : Bool
=] payload : Bits(8 bits) =~ Stream Bits(8 bit) ready : Bool
[*] payload : Bits(8 bits)
. b
it busCtrl
[#] PSEL : Bool

[%] PENABLE : Bool
[%| PADDR : Uint(4 bits)

AMBA-APB3 4 [55] PWDATA : Bits(32 bits)
[«=| PRDATA : Bits(32 bits)
[«| PREADY : Bool

class Apb3UartCtrl(uartCtrlConfig : UartCtrlGenerics, rxFifoDepth : Int) extends.
—.Component {
val io = new Bundle{
val bus = slave(Apb3(Apb3UartCtrl.getApb3Config))
val uart = master(Uart())

}

// Instanciate an simple uart controller
val uartCtrl = new UartCtrl(uartCtrlConfig)
io.uart <> uartCtrl.io.uart

// Create an instance of the Apb3SlaveFactory that will then be used as a slave.
—factory drived by io.bus
val busCtrl = Apb3SlaveFactory(io.bus)

// Ask the busCtrl to create a readable/writable register at the address 0
// and drive uartCtrl.io.config.clockDivider with this register
busCtrl.driveAndRead(uartCtrl.io.config.clockDivider,address = 0)

// Do the same thing than above but for uartCtrl.io.config.frame at the address 4
busCtrl.driveAndRead(uartCtrl.io.config.frame,address = 4)

// Ask the busCtrl to create a writable Flow[Bits] (valid/payload) at the address 8.
// Then convert it into a stream and connect it to the uartCtrl.io.write by using.

(continues on next page)

13.3. Advanced ones 229

SpinalHDL Documentation

(continued from previous page)

—an register stage (>->)
busCtrl.createAndDriveFlow(Bits(uartCtrlConfig.dataWidthMax bits),address = 8).
—toStream >-> uartCtrl.io.write

// To avoid losing writes commands between the Flow to Stream transformation just.
—above,

// make the occupancy of the uartCtrl.io.write readable at address 8

busCtrl.read(uartCtrl.io.write.valid,address = 8)

// Take uartCtrl.io.read, convert it into a Stream, then connect it to the input of,
—a FIFO of 64 elements

// Then make the output of the FIFO readable at the address 12 by using a non.
—blocking protocol

// (Bit 7 downto 0 => read data
 Bit 31 => read data valid)

busCtrl.readStreamNonBlocking(uartCtrl.io.read.toStream.queue (rxFifoDepth),

address = 12, validBitOffset = 31, payloadBitOffset =.

-0)
}

Important:

Yes, that’s all it takes. It’s also synthesizable.
The Apb3SlaveFactory tool is not something hard-coded into the SpinalHDL compiler. It’s something
implemented with SpinalHDL regular hardware description syntax.

13.3.3 Pinesec

Remember to add it

13.3.4 Timer

Introduction

A timer module is probably one of the most basic pieces of hardware. But even for a timer, there are some interesting
things that you can do with SpinalHDL. This example will define a simple timer component which integrates a bus
bridging utile.

Timer

So let’s start with the Timer component.

Specification

The Timer component will have a single construction parameter:

Parameter Name Type Description
width Int Specify the bit width of the timer counter

And also some inputs/outputs:

230 Chapter 13. Examples

SpinalHDL Documentation

IO Name | Direction | Type Description

tick in Bool When tick is True, the timer count up until 1imit.

clear in Bool When tick is True, the timer is set to zero. clear has
priority over tick.

limit in Ulnt(width bits) When the timer value is equal to 1imit, the tick in-
put is inhibited.

full out Bool full is high when the timer value is equal to 1imit
and tick is high.

value out Ulnt(width bits) Wire out the timer counter value.

Implementation

case class Timer(width : Int) extends Component{
val io = new Bundle{

val tick = in Bool()
val clear = in Bool(Q)
val limit = in UInt(width bits)

val full = out Bool()
val value = out UInt(width bits)
}

val counter = Reg(UInt(width bits))
when(io.tick && !io.full){

counter := counter + 1
}
when(io.clear){
counter := 0
}
io.full := counter === io.limit && io.tick
io.value := counter
}

Bridging function

Now we can start with the main purpose of this example: defining a bus bridging function. To do that we will use
two techniques:

 Using the BusSlaveFactory tool documented /ere

* Defining a function inside the Timer component which can be called from the parent component to drive
the Timer‘s IO in an abstract way.

Specification

This bridging function will take the following parameters:

13.3. Advanced ones 231

SpinalHDL Documentation

Pa- Type | Description
ram-
eter
Name
busCtrl| Bus- The BusSlaveFactory instance that will be used by the function to create the bridging
Slave- | logic.

Fac-
tory
baseAd: Big- The base address where the bridging logic should be mapped.
dress Int
ticks Seq[BoolA list of Bool sources that can be used as a tick signal.
clears | Seq[BoolA list of Bool sources that can be used as a clear signal.

The register mapping assumes that the bus system is 32 bits wide:

Name Ac- | Width Ad- | Bit Description

cess dress off-
off- | set
set
tick- | RW | len(tick®) 0 Each ticks bool can be actived if the corresponding ticksEnable bit
sEn- is high.
able
clearsERW | len(cledds) 16 Each clears bool can be actived if the corresponding clearsEnable
able bit is high.

limit | RW | width| 4 0

Access the limit value of the timer component.
When this register is written to, the timer is cleared.

value| R width| 8 0 Access the value of the timer.
clear | W 8 When this register is written to, it clears the timer.

Implementation

Let’s add this bridging function inside the Timer component.

case class Timer(width : Int) extends Component{
val io = new Bundle{

val tick = in Bool ()
val clear = in Bool()
val limit = in UInt(width bits)

val full = out Bool()
val value = out UInt(width bits)
}

// Logic previously defined
VA

// The function prototype uses Scala currying funcName(argl,arg2) (arg3,arg3)

// which allow to call the function with a nice syntax later

// This function also returns an area, which allows to keep names of inner signals.,
—»1n the generated VHDL/Verilog.

def driveFrom(busCtrl : BusSlaveFactory,baseAddress : BigInt)(ticks : Seq[Bool],
—clears : Seq[Bool]) = new Area {

(continues on next page)

232 Chapter 13. Examples

SpinalHDL Documentation

(continued from previous page)

//Address ® => clear/tick masks + bus

val ticksEnable = busCtrl.createReadWrite(Bits(ticks.length bits),baseAddress +.
~0,0) init(0)

val clearsEnable = busCtrl.createReadWrite(Bits(clears.length bits),baseAddress +.
—0,16) init(0)

val busClearing = False
io.clear := (clearsEnable & clears.asBits).orR | busClearing
io.tick = (ticksEnable & ticks.asBits).orR

//Address 4 => read/write limit (+ auto clear)
busCtrl.driveAndRead(io.limit,baseAddress + 4)
busClearing setWhen(busCtrl.isWriting(baseAddress + 4))

//Address 8 => read timer value / write => clear timer value
busCtrl.read(io.value,baseAddress + 8)
busClearing setWhen(busCtrl.isWriting(baseAddress + 8))
}
}

Usage

Here is some demonstration code which is very close to the one used in the Pinsec SoC timer module. Basically it
instantiates following elements:

* One 16 bit prescaler
¢ One 32 bit timer
e Three 16 bit timers

Then by using an Apb3SlaveFactory and functions defined inside the Timers, it creates bridging logic between
the APB3 bus and all instantiated components.

val io = new Bundle{
val apb = Apb3(ApbConfig(addressWidth = 8, dataWidth = 32))
val interrupt = in Bool()
val external = new Bundle{
val tick = Bool()
val clear = Bool()
}
}

//Prescaler is very similar to the timer, it mainly integrates a piece of auto reload.
—~logic.
val prescaler = Prescaler(width = 16)

val timerA = Timer(width = 32)
val timerB,timerC,timerD = Timer(width = 16)

val busCtrl = Apb3SlaveFactory(io.apb)
val prescalerBridge = prescaler.driveFrom(busCtrl,0x00)

val timerABridge = timerA.driveFrom(busCtrl, 0x40) (

// The first element is True, which allows you to have a mode where the timer is.
—always counting up.

ticks = List(True, prescaler.io.overflow),

(continues on next page)

13.3. Advanced ones 233

SpinalHDL Documentation

(continued from previous page)

// By looping the timer full to the clears, it allows you to create an autoreload.
—mode.
clears = List(timerA.io.full)

)

val timerBBridge = timerB.driveFrom(busCtrl,0x50) (
//The external.tick could allow to create an impulsion counter mode
ticks = List(True, prescaler.io.overflow, io.external.tick),
//external.clear could allow to create an timeout mode.
clears = List(timerB.io.full, io.external.clear)

)

val timerCBridge = timerC.driveFrom(busCtrl,0x60) (
ticks = List(True, prescaler.io.overflow, io.external.tick),
clears = List(timerC.io.full, io.external.clear)

)

val timerDBridge = timerD.driveFrom(busCtrl,0x70) (
ticks = List(True, prescaler.io.overflow, io.external.tick),
clears = List(timerD.io.full, io.external.clear)

)

val interruptCtrl = InterruptCtrl(4)
val interruptCtrlBridge = interruptCtrl.driveFrom(busCtrl,0x10)

interruptCtrl.io.inputs(0®) := timerA.io.full
interruptCtrl.io.inputs(l) := timerB.io.full
interruptCtrl.io.inputs(2) := timerC.io.full
interruptCtrl.io.inputs(3) := timerD.io.full
io.interrupt := interruptCtrl.io.pendings.orR

13.4 Introduction

Examples are split into three kinds:
» Simple examples that could be used to get used to the basics of SpinalHDL.
* Intermediate examples which implement components by using a traditional approach.

* Advanced examples which go further than traditional HDL by using object-oriented programming, functional
programming, and meta-hardware description.

They are all accessible in the sidebar under the corresponding sections.

Important: The SpinalHDL workshop contains many labs with their solutions. See here.

Note: You can also find a list of repostitories using SpinalHDL /ere

234 Chapter 13. Examples

https://github.com/SpinalHDL/SpinalWorkshop

CHAPTER
FOURTEEN

LEGACY

14.1 RiscV

Warning: This page document the first RISC-V cpu iteration done in SpinalHDL. The second iteration of this
CPU is available there and already offer better perforance/area/features.

14.1.1 Features

RISC-V CPU

* Pipelined on 5 stages (Fetch Decode Execute0 Executel WriteBack)

» Multiple branch prediction modes : (disable, static or dynamic)

» Data path parameterizable between fully bypassed to fully interlocked
Extensions

* One cycle multiplication

* 34 cycle division

* Tterative shifter (N shift -> N cycles)

* Single cycle shifter

¢ Interruption controller

* Debugging module (with JTAG bridge, openOCD port and GDB)

* Instruction cache with wrapped burst memory interface, one way

 Data cache with instructions to evict/flush the whole cache or a given address, one way
Performance/Area (on cyclone II)

e small core -> 846 LE, 0.6 DMIPS/Mhz

* debug module (without JTAG) -> 240 LE

* JTAG Avalon master -> 238 LE

* big core with MUL/DIV/Full shifter/I$/Interrupt/Debug -> 2200 LE, 1.15 DMIPS/Mhz, at least 100 Mhz
(with default synthesis option)

235

https://github.com/SpinalHDL/VexRiscv

SpinalHDL Documentation

14.1.2 Base FPGA project

You can find a DEI-SOC project which integrate two instance of the CPU with MUL/DIV/Full
shifter/I$/Interrupt/Debug there :
https://drive.google.com/drive/folders/0B-CqLXDTaMbKNkktb2k3T31zcUk ?usp=sharing

CPU/JTAG/VGA IP are pre-generated. Quartus Prime : 15.1.

14.1.3 How to generate the CPU VHDL

Warning: This avalon version of the CPU isn’t present in recent releases of SpinalHDL. Please considarate
the VexRiscv instead.

14.1.4 How to debug

You can find the openOCD fork there :

https://github.com/Dolul1990/openocd_riscv

An example target configuration file could be find there :
https://github.com/Dolu1990/openocd_riscv/blob/riscv_spinal/tcl/target/riscv_spinal.cfg
Then you can use the RISCV GDB.

14.1.5 Todo

* Documentation
* Optimise instruction/data caches FMax by moving line hit condition forward into combinatorial paths.

Contact spinalhdl @gmail.com for more information

14.2 pinsec

14.2.1 Hardware

Introduction

There is the Pinsec toplevel hardware diagram :

236 Chapter 14. Legacy

https://drive.google.com/drive/folders/0B-CqLXDTaMbKNkktb2k3T3lzcUk?usp=sharing
https://github.com/SpinalHDL/VexRiscv
https://github.com/Dolu1990/openocd_riscv
https://github.com/Dolu1990/openocd_riscv/blob/riscv_spinal/tcl/target/riscv_spinal.cfg
mailto:spinalhdl@gmail.com

SpinalHDL Documentation

AxiCrossbar
vgaCtrl.io.axi
SdramCtrl
¥ axi sdram [sh}—{=] sdram
RISCV
core.io.debugBus [#] debugBus InstructionBus [=p}
interrupt i DataBi .
p | interrupt atal US /— core.io.debugBus
OnChipRam GPIO
p| axi [#] apb gpio [#]—{=] gpioA
GPIO
[#] apb gpio [#]—{=] gpioB

-
JtagCrl APB3Bridge 8 Timer

s}

jtag [#—{=] jtag axi [#] ‘G;;] apb interrupt [}— interrupt(1)

m

o
< UartCtrl

] apb uart [}—{=*] vart

interrupt [s¥— interrupt(0)

VgaCtrl

] apb axi E» vgaCtrl.io.axi
vga [#}—3] vga

/

RISCV

The RISCV is a 5 stage pipelined CPU with following features :
* Instruction cache
* Single cycle Barrel shifter
* Single cycle MUL, 34 cycle DIV
* Interruption support
* Dynamic branch prediction

* Debug port

AXIi4
As previously said, Pinsec integrate an AXI4 bus fabric. AXI4 is not the easiest bus on the Earth but has many
advantages like :

* A flexible topology

* High bandwidth potential

* Potential out of order request completion

» Easy methods to meets clocks timings

 Standard used by many IP

* An hand-shaking methodology that fit with SpinalHDL Stream.

From an Area utilization perspective, AXI4 is for sure not the lightest solution, but some techniques could dramat-
ically reduce that issue :

14.2. pinsec 237

SpinalHDL Documentation

 Using Read-Only/Write-Only AXI4 variations where it’s possible

* Introducing an Axi4-Shared variation where a new ARW channel is introduced to replace AR and AW chan-
nels. This solution divide resources usage by two for the address decoding and the address arbitration.

* Depending the interconnect implementation, if masters doesn’t use the R/B channels ready, this path will be
removed until each slaves at synthesis, which relax timings.

* Asthe AXI4 spec suggest, the interconnect can expand the transactions ID by aggregating the corresponding
input port id. This allow the interconnect to have an infinite number of pending request and also to support
out of order completion with a negligible area cost (transaction id expand).

The Pinsec interconnect doesn’t introduce latency cycles.

APB3
In Pinsec, all peripherals implement an APB3 bus to be interfaced. The APB3 choice was motivated by following
reasons :

* Very simple bus (no burst)

» Use very few resources

 Standard used by many IP

Generate the RTL

To generate the RTL, you have multiple solutions :

You can download the SpinalHDL source code, and then run :

sbt "project SpinalHDL-1ib" "run-main spinal.lib.soc.pinsec.Pinsec"

Or you can create your own main into your own SBT project and then run it :

import spinal.lib.soc.pinsec._

object PinsecMain{
def main(args: Array[String]) {
SpinalVhdl (new Pinsec(100 MHz))
SpinalVerilog(new Pinsec(100 MHz))
}
}

Note: Currently, only the verilog version was tested in simulation and in FPGA because the last release of GHDL
is not compatible with cocotb.

14.2.2 SoC toplevel (Pinsec)

Introduction
Pinsec is a little SoC designed for FPGA. It is available in the SpinalHDL library and some documentation could
be find there

Its toplevel implementation is an interesting example, because it mix some design pattern that make it very easy to
modify. Adding a new master or a new peripheral to the bus fabric could be done in the seconde.

This toplevel implementation could be consulted there : https://github.com/SpinalHDL/SpinalHDL/blob/master/
lib/src/main/scala/spinal/lib/soc/pinsec/Pinsec.scala

238 Chapter 14. Legacy

https://github.com/SpinalHDL/SpinalHDL/blob/master/lib/src/main/scala/spinal/lib/soc/pinsec/Pinsec.scala
https://github.com/SpinalHDL/SpinalHDL/blob/master/lib/src/main/scala/spinal/lib/soc/pinsec/Pinsec.scala

SpinalHDL Documentation

There is the Pinsec toplevel hardware diagram :

AxiCrossbar

vgaCtrl.io.axi

RISCV

core.io.debugBus —=] debugBus
interrupt —E> interrupt

; [
InstructionBus Lﬂ_
DataBus [

SdramCtrl

.

sdram

ore.io.debugBus

OnChipRam GPIO
p] axi [=#] apb gpio [#—{=] gpioA
GPIO
(=] apb gpio [S}—{=] gpioB
JdiagCtd APB3Bridge 8 Timer
jiag (== jtag axi [4] axi apb [§] apb interrupt [B— interrupt(1)

m

o

< UartCtrl

] apb uart = uart
interrupt interrupt(0)
‘resetCtrl |
EEEEPEEY VgaCtrl
\—Eﬂ apb axi [}— vgaCirl.io.axi
vga [#—{=] vga
Defining all 10
val io = new Bundle{

//Clocks / reset
val asyncReset = in Bool()
val axiClk = in Bool()
val vgaClk = in Bool()
//Main components IO
val jtag = slave(Jtag(Q))
val sdram = master(SdramInterface(IS42x320D.layout))

//Peripherals IO
val gpioA
—output enable control

= master(TriStateArray(32 bits))

val gpioB = master(TriStateArray(32 bits))
val uart = master(Uart())
val vga = master(Vga(RgbConfig(5,6,5)))

}

//Each pin has it's individual.,

14.2. pinsec

239

SpinalHDL Documentation

Clock and resets

Pinsec has three clocks inputs :
* axiClock
* vgaClock
* jtag.tck
And one reset input :
* asyncReset

Which will finally give 5 ClockDomain (clock/reset couple) :

Name Clock | Description

resetCtrlClock- | axi- Used by the reset controller, Flops of this clock domain are initialized by the FPGA
Domain Clock | bitstream

axiClockDo- axi- Used by all component connected to the AXI and the APB interconnect

main Clock

coreClockDo- axi- The only difference with the axiClockDomain, is the fact that the reset could also
main Clock | be asserted by the debug module

vgaClockDo- vga- Used by the VGA controller backend as a pixel clock

main Clock

jtagClockDo- jtag.tck | Used to clock the frontend of the JTAG controller

main

Reset controller

First we need to define the reset controller clock domain, which has no reset wire, but use the FPGA bitstream
loading to setup flipflops.

val resetCtrlClockDomain = ClockDomain(
clock = io.axiClk,
config = ClockDomainConfig(
resetKind = BOOT
)
)

Then we can define a simple reset controller under this clock domain.

val resetCtrl = new ClockingArea(resetCtrlClockDomain) {
val axiResetUnbuffered = False
val coreResetUnbuffered = False

//Implement an counter to keep the reset axiResetOrder high 64 cycles
// Also this counter will automaticly do a reset when the system boot.
val axiResetCounter = Reg(UInt(6 bits)) init(0)
when(axiResetCounter =/= U(axiResetCounter.range -> true)){
axiResetCounter := axiResetCounter + 1
axiResetUnbuffered := True
}
when (BufferCC(io.asyncReset)){
axiResetCounter := 0

}

//When an axiResetOrder happen, the core reset will as well
when(axiResetUnbuffered) {

(continues on next page)

240 Chapter 14. Legacy

SpinalHDL Documentation

(continued from previous page)

coreResetUnbuffered := True

}

//Create all reset used later in the design
val axiReset = RegNext(axiResetUnbuffered)
val coreReset = RegNext(coreResetUnbuffered)
val vgaReset BufferCC(axiResetUnbuffered)

Systems clock domains

Now that the reset controller is implemented, we can define clock domain for all part of Pinsec :

val axiClockDomain = ClockDomain(

clock = io.axiClk,

reset resetCtrl.axiReset,

frequency = FixedFrequency(50 MHz) //The frequency information is used by the SDRAM,
—scontroller

)

val coreClockDomain = ClockDomain(
clock = io.axiClk,
reset = resetCtrl.coreReset

)

val vgaClockDomain = ClockDomain(
clock = io.vgaClk,
reset = resetCtrl.vgaReset

)

val jtagClockDomain = ClockDomain(
clock = io.jtag.tck
)

Also all the core system of Pinsec will be defined into a axi clocked area :

val axi = new ClockingArea(axiClockDomain) {
//Here will come the rest of Pinsec

¥

Main components

Pinsec is constituted mainly by 4 main components :
¢ One RISCV CPU
* One SDRAM controller
* One on chip memory

¢ One JTAG controller

14.2. pinsec 241

SpinalHDL Documentation

RISCV CPU

The RISCV CPU used in Pinsec as many parametrization possibilities :

val

core = coreClockDomain {

val coreConfig = CoreConfig(

)

pcWidth = 32,

addrWidth = 32,

startAddress = 0x00000000,
regFileReadyKind = sync,
branchPrediction = dynamic,
bypassExecute® = true,
bypassExecutel = true,
bypassWriteBack = true,
bypassWriteBackBuffer = true,
collapseBubble = false,
fastFetchCmdPcCalculation = true,
dynamicBranchPredictorCacheSizelog2 = 7

//The CPU has a systems of plugin which allow to add new feature into the core.
//Those extension are not directly implemented into the core, but are kind of.
—additive logic patch defined in a separated area.
coreConfig.add(new MulExtension)
coreConfig.add(new DivExtension)
coreConfig.add(new BarrelShifterFullExtension)

val iCacheConfig = InstructionCacheConfig(

)

//There is the

cacheSize =4096,

bytePerLine =32,

wayCount = 1, //Can only be one for the moment
wrappedMemAccess = true,

addressWidth = 32,

cpuDataWidth 32,

memDataWidth = 32

new RiscvAxi4(

coreConfig = coreConfig,
iCacheConfig = iCacheConfig,
dCacheConfig = null,

debug = true,

interruptCount = 2

instanciation of the CPU by using all those construction parameters

242

Chapter 14. Legacy

SpinalHDL Documentation

On chip RAM

The instanciation of the AXI4 on chip RAM is very simple.

In fact it’s not an AXI4 but an Axi4Shared, which mean that a ARW channel replace the AR and AW ones. This
solution use less area while being fully interoperable with full AXI4.

val ram = Axi4SharedOnChipRam(
dataWidth = 32,
byteCount = 4 kB,
idWidth = 4 //Specify the AXI4 ID width.

SDRAM controller

First you need to define the layout and timings of your SDRAM device. On the DE1-SOC, the SDRAM device is
an IS42x320D one.

object IS42x320D {
def layout = SdramLayout(
bankWidth =2,
columnWidth = 10,

rowWidth =13,
dataWidth = 16

)

def timingGrade7 = SdramTimings(
bootRefreshCount = 8,
tPOW = 100 us,
tREF = 64 ms,
tRC = 60 ns,
tRFC = 60 ns,
tRAS = 37 ns,
tRP = 15 ns,
tRCD = 15 ns,
cMRD = 2,
tWR = 10 ns,
cWR = 1

)

}

Then you can used those definition to parametrize the SDRAM controller instantiation.

val sdramCtrl = Axi4SharedSdramCtrl(
axiDataWidth = 32,

axiIdwidth = 4,
layout = IS42x320D.layout,
timing = IS42x320D.timingGrade7,
CAS =3

)

14.2. pinsec 243

SpinalHDL Documentation

JTAG controller

The JTAG controller could be used to access memories and debug the CPU from an PC.

val jtagCtrl = JtagAxi4SharedDebugger (SystemDebuggerConfig(
memAddressWidth = 32,

memDataWidth = 32,
remoteCmdWidth = 1,
jtagClockDomain = jtagClockDomain
))
Peripherals

Pinsec integrate some peripherals :
* GPIO
* Timer
* UART
* VGA

GPIO

val gpioACtrl = Apb3Gpio(
gpioWidth = 32
)

val gpioBCtrl = Apb3Gpio(
gpioWidth = 32
)

Timer

The Pinsec timer module is constituted of :
* One prescaler
* One 32 bits timer
» Three 16 bits timers

All of them are packed into the PinsecTimerCtrl component.

val timerCtrl = PinsecTimerCtrl()

244

Chapter 14. Legacy

SpinalHDL Documentation

UART controller

First we need to define a configuration for our UART controller :

val uartCtrlConfig = UartCtrlMemoryMappedConfig(
uartCtrlConfig = UartCtrlGenerics(

dataWidthMax = 8,
clockDividerWidth = 20,
preSamplingSize =1,
samplingSize =5,
postSamplingSize = 2
s
txFifoDepth = 16,
rxFifoDepth = 16

)

Then we can use it to instantiate the UART controller

val uartCtrl = Apb3UartCtrl(uartCtrlConfig)

VGA controller

First we need to define a configuration for our VGA controller :

val vgaCtrlConfig = Axi4VgaCtrlGenerics(

axiAddressWidth = 32,

axiDataWidth = 32,

burstLength = 8, //In Axi words
frameSizeMax = 2048*1512%2, //In byte
fifoSize = 512, //In axi words
rgbConfig = RgbConfig(5,6,5),

vgaClock = vgaClockDomain

Then we can use it to instantiate the VGA controller

val vgaCtrl = Axi4VgaCtrl(vgaCtrlConfig)

Bus interconnects

There is three interconnections components :
* AXI4 crossbar
* AXI4 to APB3 bridge
* APB3 decoder

14.2. pinsec 245

SpinalHDL Documentation

AXl4 to APB3 bridge

This bridge will be used to connect low bandwidth peripherals to the AXI crossbar.

val apbBridge = Axi4SharedToApb3Bridge(

addressWidth = 20,
dataWidth = 32,
idWidth =4

AXI4 crossbar

The AXI4 crossbar that interconnect AXI4 masters and slaves together is generated by using an factory. The concept
of this factory is to create it, then call many function on it to configure it, and finaly call the build function to ask
the factory to generate the corresponding hardware :

val axiCrossbar = Axi4CrossbarFactory()

// Where you will have to call function the the axiCrossbar factory to populate its.
—configuration

axiCrossbar.build()

First you need to populate slaves interfaces :

// Slave -> (base address, size) ,

axiCrossbar.addSlaves(
ram.io.axi -> (0x00000000L, 4 kB),
sdramCtrl.io.axi -> (0x40000000L, 64 MB),
apbBridge.io.axi -> (0xFOOOO00O0L, 1 MB)
)

Then you need to populate interconnections between slaves and masters :

// Master -> List of slaves which are accessible

axiCrossbar.addConnections(

core.io.i -> List(ram.io.axi, sdramCtrl.io.axi),
core.io.d -> List(ram.io.axi, sdramCtrl.io.axi, apbBridge.io.axi),
jtagCtrl.io.axi -> List(ram.io.axi, sdramCtrl.io.axi, apbBridge.io.axi),
vgaCtrl.io.axi -> List(sdramCtrl.io.axi)

)

Then to reduce combinatorial path length and have a good design FMax, you can ask the factory to insert pipelining
stages between itself a given master or slave :

Note:

halfPipe/>>/ << />/-> in the following code are provided by the Stream bus library.
Some documentation could be find rhere. In short, it’s just some pipelining and interconnection stuff.

//Pipeline the connection between the crossbar and the apbBridge.io.axi
axiCrossbar.addPipelining(apbBridge.io.axi, (crossbar,bridge) => {
crossbar.sharedCmd.halfPipe() >> bridge.sharedCmd
crossbar.writeData.halfPipe() >> bridge.writeData
crossbar.writeRsp << bridge.writeRsp

(continues on next page)

246 Chapter 14. Legacy

SpinalHDL Documentation

(continued from previous page)

crossbar.readRsp << bridge.readRsp

D

//Pipeline the connection between the crossbar and the sdramCtrl.io.axi
axiCrossbar.addPipelining(sdramCtrl.io.axi, (crossbar,ctrl) => {
crossbar.sharedCmd.halfPipe() >> ctrl.sharedCmd

crossbar.writeData >/-> ctrl.writeData
crossbar.writeRsp << ctrl.writeRsp
crossbar.readRsp << ctrl.readRsp
D
APB3 decoder

The interconnection between the APB3 bridge and all peripherals is done via an APB3Decoder :

val apbDecoder = Apb3Decoder(

master = apbBridge.io.apb,

slaves = List(
gpioACtrl.io.apb -> (0x00000, 4 kB),
gpioBCtrl.io.apb -> (0x01000, 4 kB),
uartCtrl.io.apb -> (0x10000, 4 kB),
timerCtrl.io.apb -> (0x20000, 4 kB),
vgaCtrl.io.apb -> (0x30000, 4 kB),
core.io.debugBus -> (0xFO000, 4 kB)

Misc

To connect all toplevel IO to components, the following code is required :

io.gpioA <> axi.gpioACtrl.io.gpio
io.gpioB <> axi.gpioBCtrl.io.gpio
io.jtag <> axi.jtagCtrl.io.jtag
io.uart <> axi.uartCtrl.io.uart
io.sdram <> axi.sdramCtrl.io.sdram
io.vga <> axi.vgaCtrl.io.vga

And finally some connections between components are required like interrupts and core debug module resets

uartCtrl.io.interrupt
timerCtrl.io.interrupt

core.io.interrupt(0)
core.io.interrupt(l)

core.io.debugResetIn := resetCtrl.axiReset

when(core.io.debugResetOut) {
resetCtrl.coreResetUnbuffered := True

}

14.2. pinsec 247

SpinalHDL Documentation

14.2.3 Introduction

Note: This page document the SoC implemented with the first RISC-V cpu iteration done in SpinalHDL. The
second iteration of this SoC (and CPU) is available there and offer better perforance/area/features.

Introduction

Pinsec is the name of a little FPGA SoC fully written in SpinalHDL. Goals of this project are multiple :
* Prove that SpinalHDL is a viable HDL alternative in non-trivial projects.
» Show advantage of SpinalHDL meta-hardware description capabilities in a concrete project.
* Provide a fully open source SoC.
Pinsec has followings hardware features:
* AXI4 interconnect for high speed busses
* APB3 interconnect for peripherals
* RISCV CPU with instruction cache, MUL/DIV extension and interrupt controller
» JTAG bridge to load binaries and debug the CPU
* SDRAM SDR controller
* On chip ram
* One UART controller
* One VGA controller
* Some timer module
* Some GPIO

The toplevel code explanation could be find there

Board support

A DEI1-SOC FPGA project can be find there with some demo binaries.

14.2.4 Software

RISCV tool-chain

Binaries executed by the CPU can be defined in ASM/C/C++ and compiled by the GCC RISCV fork. Also, to load
binaries and debug the CPU, an OpenOCD fork and RISCV GDB can be used.

RISCV tools : https://github.com/riscv/riscv-wiki/wiki/RISC- V-Software-Status
OpenOCD fork : https://github.com/Dolu1990/openocd_riscv
Software examples : https://github.com/Dolul990/pinsecSoftware

248 Chapter 14. Legacy

https://github.com/SpinalHDL/VexRiscv
https://drive.google.com/drive/folders/0B-CqLXDTaMbKOGhIU0JGdHVVSk0?usp=sharing
https://github.com/riscv/riscv-wiki/wiki/RISC-V-Software-Status
https://github.com/Dolu1990/openocd_riscv
https://github.com/Dolu1990/pinsecSoftware

SpinalHDL Documentation

OpenOCD/GDB/Eclipse configuration

About the OpenOCD fork, there is the configuration file that could be used to connect the Pinsec SoC : https:
/I github.com/Dolu1990/openocd_riscv/blob/riscv_spinal/tcl/target/riscv_spinal.cfg

There is an example of arguments used to run the OpenOCD tool :

openocd -f ../tcl/interface/ftdi/ft2232h_breakout.cfg -f ../tcl/target/riscv_spinal.
—cfg -d 3

To debug with eclipse, you will need the Zylin plugin and then create an ‘“Zynlin embedded debug (native)”.

Initialize commands :

target remote localhost:3333
monitor reset halt
load

Run commands :

continue

14.2. pinsec 249

https://github.com/Dolu1990/openocd_riscv/blob/riscv_spinal/tcl/target/riscv_spinal.cfg
https://github.com/Dolu1990/openocd_riscv/blob/riscv_spinal/tcl/target/riscv_spinal.cfg

SpinalHDL Documentation

250 Chapter 14. Legacy

CHAPTER
FIFTEEN

DEVELOPERS AREA

15.1 Bus Slave Factory Implementation

15.1.1 Introduction

This page will document the implementation of the BusSlaveFactory tool and one of those variant. You can get
more information about the functionality of that tool /ere.

15.1.2 Specification

The class diagram is the following :

PPy g -d—l BusSlaveFactoryRead |

? '-'g.;ﬂ—| BusSlaveFactoryWrite |

RSy -+ 2.t g B Onfoag |

ZF : %Eﬂ—' BusSlaveFactoryRead |

| Apb3SlaveFactory I E@Eﬂ—lBusSIaveFactoryNonStopWrite|
| AvalonMMSlaveFactory I U:{

| AxiLite4SlaveFactory |

The BusSlaveFactory abstract class define minimum requirements that each implementation of it should provide

Name Description

busDataWidth Return the data width of the bus

read(that,address|bMOirethe bus read the address, fill the response with that at bitOffset
write(that,address, BMbfseig bus write the address, assign that with bus’s data from bitOffset
on- Call doThat when a write transaction occur on address
Write(address)(doThat)

on- Call doThat when a read transaction occur on address

Read(address)(dgThat)

nonStop- Permanently assign that by the bus write data from bitOffset
Write(that,bitOffset)

By using them the BusSlaveFactory should also be able to provide many utilities :

251

SpinalHDL Documentation

dRead(that,address,bitOf

Name Re- Description
turn

readAnd- Make that readable and writable at address and placed at bitOffset in the word
Write(that,address,bitOff'set)
readMulti-
Word(that.addrgss) Create the memory mapping to read that from ‘address’. :

If that is bigger than one word it extends the register on followings addresses
writeMulti-
Word(that,addrgss) Create the memory mapping to write that at ‘address’. :

If that is bigger than one word it extends the register on followings addresses
cre- T Create a write only register of type dataType at address and placed at bitOffset
ateWriteOnly(dataType,adidrehe, bitiddfset)
createRead- T Create a read write register of type dataType at address and placed at bitOffset
Write(dataTypejaddress,bitthetyord
create- Flow[T]] Create a writable Flow register of type dataType at address and placed at
AndDrive- bitOffset in the word
Flow(dataType,pddress,hitOffset)
drive(that,address,bitOffseBrive that with a register writable at address placed at bitOffset in the word
driveAn- Drive that with a register writable and readable at address placed at bitOffset

fiet Ythe word

drive-
Flow(that,addre;

ss,bitOff

se)i tOffset in the word

Emit on that a transaction when a write happen at address by using data placed at

readStreamNon

validBitOffset,p

Blocking

ayloadBi

(tﬁggg dg}gs% ,and consume the transaction when a read happen at address.
valid <= validBitOffset bit
t@@é]é@d <= payloadBitOffset+widthOf(payload) downto payloadBitOffset

doBitsAccumul

(that,address,bitOffset)

ationAnd

CI]nst C'ﬁlte gn internal register which at each cycle do :

earOnRea
reg :=reg | that
Then when a read occur, the register is cleared. This register is readable at address
and placed at bitOffset in the word

About BusSlaveFactoryDelayed, it’s still an abstract class, but it capture each primitives (BusSlaveFactoryEle-
ment) calls into a data-model. This datamodel is one list that contain all primitives, but also a HashMap that link
each address used to a list of primitives that are using it. Then when they all are collected (at the end of the current
component), it do a callback that should be implemented by classes that extends it. The implementation of this
callback should implement the hardware corresponding to all primitives collected.

252

Chapter 15. Developers area

SpinalHDL Documentation

15.1.3 Implementation

BusSlaveFactory

Let’s describe primitives abstract function :

trait BusSlaveFactory extends Areaf{
def busDataWidth : Int

def read(that : Data,
address : BigInt,
bitOffset : Int = 0) : Unit

def write(that : Data,
address : BigInt,
bitOffset : Int = 0) : Unit

def onWrite(address : BigInt)(doThat : => Unit) : Unit
def onRead (address : BigInt)(doThat : => Unit) : Unit

def nonStopWrite(that : Data,
bitOffset : Int = 0) : Unit

/S
}

Then let’s operate the magic to implement all utile based on them :

trait BusSlaveFactory extends Areaf{
/..
def readAndWrite(that : Data,
address: BigInt,
bitOffset : Int = 0): Unit = {
write(that,address,bitOffset)
read(that,address,bitOffset)
}

def drive(that : Data,
address : BigInt,
bitOffset : Int = 0) : Unit = {
val reg = Reg(that)
write(reg,address,bitOffset)
that := reg
}

def driveAndRead(that : Data,
address : BigInt,
bitOffset : Int = 0) : Unit = {
val reg = Reg(that)
write(reg,address,bitOffset)
read(reg,address,bitOffset)
that := reg
}

def driveFlow[T <: Data](that : Flow[T],
address: BigInt,
bitOffset : Int = 0) : Unit = {

(continues on next page)

15.1. Bus Slave Factory Implementation 253

SpinalHDL Documentation

(continued from previous page)

that.valid := False
onlirite(address){
that.valid := True
}
nonStopWrite(that.payload,bitOffset)
}

def createReadWrite[T <: Data](dataType: T,
address: BigInt,
bitOffset : Int = 0): T = {
val reg = Reg(dataType)
write(reg,address,bitOffset)
read(reg,address,bitOffset)
reg

3

def createAndDriveFlow[T <: Data](dataType : T,
address: BigInt,
bitOffset : Int = 0) : Flow[T] = {
val flow = Flow(dataType)
driveFlow(flow,address,bitOffset)
flow
}

def doBitsAccumulationAndClearOnRead(that : Bits,
address : BigInt,
bitOffset : Int = 0): Unit = {
assert(that.getWidth <= busDataWidth)
val reg = Reg(that)
reg := reg | that
read(reg,address,bitOffset)
onRead(address) {
reg := that
}
}

def readStreamNonBlocking[T <: Data] (that : Stream[T],

address: BigInt,
validBitOffset : Int,
payloadBitOffset : Int) : Unit = {

that.ready := False

onRead(address) {

that.ready := True

}

read(that.valid ,address,validBitOffset)

read(that.payload,address,payloadBitOffset)

}

def readMultiWord(that : Data,
address : BigInt) : Unit = {
val wordCount = (widthOf(that) - 1) / busDataWidth + 1
val valueBits = that.asBits.resize(wordCount*busDataWidth)
val words = (0 until wordCount).map(id => valueBits(id * busDataWidth ,.
—busDataWidth bit))

for (wordId <- (0 until wordCount)) {

read(words (wordId), address + wordId*busDataWidth/8)

(continues on next page)

254 Chapter 15. Developers area

SpinalHDL Documentation

(continued from previous page)

}
}

def writeMultiWord(that : Data,
address : BigInt) : Unit = {
val wordCount = (widthOf(that) - 1) / busDataWidth + 1
for (wordId <- (0 until wordCount)) {
write(
that = new Datalrapper{
override def getBitsWidth: Int =
Math.min(busDataWidth, widthOf(that) - wordId * busDataWidth)

override def assignFromBits(value : Bits): Unit = {
that.assignFromBits(

bits = value.resized,
offset = wordId * busDataWidth,
bitCount = getBitsWidth bits)

}

},address = address + wordId * busDataWidth / 8,0
)
}
}
}

BusSlaveFactoryDelayed

Let’s implement classes that will be used to store primitives :

trait BusSlaveFactoryElement

// Ask to make ‘that® readable when a access is done on ‘address’.
// bitOffset specify where ‘that® is placed on the answer
case class BusSlaveFactoryRead(that : Data,
address : BigInt,
bitOffset : Int) extends BusSlaveFactoryElement

// Ask to make “that® writable when a access is done on “address.
// bitOffset specify where “that® get bits from the request
case class BusSlaveFactoryWrite(that : Data,
address : BigInt,
bitOffset : Int) extends BusSlaveFactoryElement

// Ask to execute ‘doThat’ when a write access is done on ‘address’
case class BusSlaveFactoryOnWrite(address : BigInt,
doThat : () => Unit) extends BusSlaveFactoryElement

// Ask to execute ‘doThat® when a read access is done on “address’
case class BusSlaveFactoryOnRead(address : BigInt,
doThat : () => Unit) extends BusSlaveFactoryElement

// Ask to constantly drive “that® with the data bus
// bitOffset specify where “that® get bits from the request
case class BusSlaveFactoryNonStopWrite(that : Data,
bitOffset : Int) extends BusSlaveFactoryElement

Then let’s implement the BusSlaveFactoryDelayed itself :

15.1. Bus Slave Factory Implementation 255

SpinalHDL Documentation

trait BusSlaveFactoryDelayed extends BusSlaveFactory{
// elements is an array of all BusSlaveFactoryElement requested
val elements = ArrayBuffer[BusSlaveFactoryElement] ()

// elementsPerAddress is more structured than elements, it group all..
—BusSlaveFactoryElement per requested addresses

val elementsPerAddress = collection.mutable.HashMap[BigInt,
—ArrayBuffer[BusSlaveFactoryElement]] ()

private def addAddressableElement(e : BusSlaveFactoryElement,address : BigInt) = {
elements += e
elementsPerAddress.getOrElseUpdate(address,.
—ArrayBuffer[BusSlaveFactoryElement]()) += e
}

override def read(that : Data,
address : BigInt,
bitOffset : Int = 0) : Unit = {
assert(bitOffset + that.getBitsWidth <= busDataWidth)
addAddressableElement (BusSlaveFactoryRead(that,address,bitOffset),address)
}

override def write(that : Data,
address : BigInt,
bitOffset : Int = 0) : Unit = {
assert(bitOffset + that.getBitsWidth <= busDataWidth)
addAddressableElement (BusSlaveFactorylirite(that,address,bitOffset),address)
}

def onWrite(address : BigInt)(doThat : => Unit) : Unit = {
addAddressableElement (BusSlaveFactoryOnWrite(address, () => doThat),address)

}

def onRead (address : BigInt)(doThat : => Unit) : Unit = {
addAddressableElement (BusSlaveFactoryOnRead(address, () => doThat),address)

}

def nonStopWrite(that : Data,
bitOffset : Int = @) : Unit = {
assert(bitOffset + that.getBitsWidth <= busDataWidth)
elements += BusSlaveFactoryNonStopWrite(that,bitOffset)
}

//This is the only thing that should be implement by class that extends.
—BusSlaveFactoryDelayed
def build() : Unit

component .addPrePopTask(() => build())
}

256 Chapter 15. Developers area

SpinalHDL Documentation

AvalonMMSlaveFactory

First let’s implement the companion object that provide the compatible AvalonMM configuration object that cor-
respond to the following table :

Pin name Type Description

read Bool High one cycle to produce a read request
write Bool High one cycle to produce a write request
address Ulnt(addressWidth bits) Byte granularity but word aligned
writeData Bits(dataWidth bits)

readDataValid Bool High to respond a read command
readData Bool(dataWidth bits) Valid when readDataValid is high

object AvalonMMSlaveFactory{
def getAvalonConfig(addressWidth : Int,
dataWidth : Int) = {
AvalonMMConfig.pipelined(//Create a simple pipelined configuration of the.
—Avalon Bus
addressWidth = addressWidth,
dataWidth = dataWidth
) .copy(//Change some parameters of the configuration
useByteEnable = false,
useWaitRequestn = false
)
}

def apply(bus : AvalonMM) = new AvalonMMSlaveFactory(bus)
}

Then, let’s implement the AvalonMMSlaveFactory itself.

class AvalonMMSlaveFactory(bus : AvalonMM) extends BusSlaveFactoryDelayed{
assert(bus.c == AvalonMMSlaveFactory.getAvalonConfig(bus.c.addressWidth,bus.c.
—.dataWidth))

Flow(Bits(bus.c.dataWidth bits))
readAtCmd.stage()

val readAtCmd
val readAtRsp

bus.readDataValid := readAtRsp.valid
bus.readData := readAtRsp.payload

readAtCmd.valid := bus.read
readAtCmd.payload := 0

override def build(): Unit = {
for(element <- elements) element match {
case element : BusSlaveFactoryNonStopWrite =>
element.that.assignFromBits(bus.writeData(element.bitOffset, element.that.
—,getBitsWidth bits))
case _ —>
}
for((address, jobs) <- elementsPerAddress){
when(bus.address === address){
when(bus.write){

for(element <- jobs) element matchf{
case element : BusSlaveFactorylirite => {

(continues on next page)

15.1. Bus Slave Factory Implementation 257

SpinalHDL Documentation

(continued from previous page)

element.that.assignFromBits(bus.writeData(element.bitOffset, element.
—that.getBitsWidth bits))

}
case element : BusSlaveFactoryOnlirite => element.doThat()
case _ =>

}
}
when(bus.read) {
for(element <- jobs) element match{
case element : BusSlaveFactoryRead => {
readAtCmd.payload(element.bitOffset, element.that.getBitsWidth bits) :=.
—,element.that.asBits

}
case element : BusSlaveFactoryOnRead => element.doThat()
case _ =>

override def busDataWidth: Int = bus.c.dataWidth

15.1.4 Conclusion

That’s all, you can check one example that use this Apb3SlaveFactory to create an Apb3UartCtrl there.

If you want to add the support of a new memory bus, it’s very simple you just need to implement another variation
of the BusSlaveFactoryDelayed trait. The Apb3SlaveFactory is probably a good starting point :D

15.2 How to HACK this documentation

If you want to add your page to this documentation you need to add your source file in the appropriate section. I
opted to create a structure that resample the various section of the documentation, this is not strictly necessary, but
for clarity sake, highly encourage.

This documentation uses a recursive index tree: every folder have a special index.rst files that tell sphinx witch
file, and in what order put it in the documentation tree.

15.2.1 Title convention

Sphinx is very smart, the document structure is deduced from how you use non alphanumerical characters (like:
=- " ' "~ A _ % 4 # <>) youonly need to be consistent. Still, for consistency sakes we use this
progression:

e = over and underline for section titles
¢ =underline for titles
* - underline for paragraph

* A for subparagraph

258 Chapter 15. Developers area

SpinalHDL Documentation

15.2.2 Wavedrom integration

This documentation makes use of the sphinxcontrib-wavedrom plugin, So you can specify a timing diagram,

or a register description with the WaveJSON syntax like so:

. wavedrom: :

{ "signal": [

{ "name": "pclk", "wave": 'p....... '3,
{ "name": "Pclk", "wave": 'P....... '3,
{ "name": "nclk", "wave": 'n....... '3,

"name": "Nclk", "wave": 'N....... },

{

{

{ "name": 'clk®', "wave": 'phnlPHNL' },
{ "name": 'clkl', "wave": 'xhlhLH1.' },
{ "name": 'clk2', "wave": 'hpHplnLn' },
{ "name": 'clk3', "wave": 'nhNhplPl' },
{ "name": 'clk4', "wave": 'xlh.L.Hx' },

1}

and you get:

Note: if you want the Wavedrom diagram to be present in the pdf export, you need to use the “non relaxed” JSON
dialect. long story short, no javascript code and use " around key value (Eg. "name").

you can describe register mapping with the same syntax:

{"reg": [
{"bits": 8, "name": "things"},
{"bits": 2, "name": "stuff" },
{"bits": 6},
1,
"config": { "bits":16,"lanes":1 }
}
15 10 9 8 7 0
stuff things
15.2. How to HACK this documentation 259

https://github.com/wavedrom/wavedrom/wiki/WaveJSON

SpinalHDL Documentation

15.2.3 New section

if you want to add a new section you need to specify in the top index, the index file of the new section. I suggest to
name the folder like the section name, but is not required; Sphinx will take the name of the section from the title
of the index file.

example

I want to document the new feature in SpinalHDL, and I want to create a section for it; let’s call it Cheese

So I need to create a folder named Cheese (name is not important), and in it create a index file like:

. toctree::
:glob:

introduction

Note: The .. toctree:: directive accept some parameters, in this case :glob: makes so you can use the * to
include all the remaining files.

Note: The file path is relative to the index file, if you want to specify the absolute path, you need to prepend /

Note: introduction.rst will be always the first on the list because it’s specified in the index file. Other files
will be included in alphabetical order.

Now I can add the introduction.rst and other files like cheddar.rst, stilton.rst, etc.

The only thing remaining to do is to add cheese to the top index file like so:

Welcome to SpinalHDL's documentation!

. toctree::
:maxdepth: 2
:titlesonly:

rst/About SpinalHDL/index
rst/Getting Started/index
rst/Data types/index
rst/Structuring/index
rst/Semantic/index
rst/Sequential logic/index
rst/Design errors/index
rst/Other language features/index
rst/Libraries/index
rst/Simulation/index
rst/Examples/index
rst/Legacy/index

(continues on next page)

260 Chapter 15. Developers area

SpinalHDL Documentation

(continued from previous page)

rst/Developers area/index
rst/Cheese/index

that’s it, now you can add all you want in cheese and all pages will show up in the documentation.

15.3 Types

15.3.1 Introduction

The language provides 5 base types and 2 composite types that can be used.
* Base types : Bool, Bits, UInt for unsigned integers, SInt for signed integers, Enum.

* Composite types : Bundle, Vec.

E_qu_eType: Bundle Vec

Enum | | Bool | ! BitVector

Bits Ulnt Sint

Those types and their usage (with examples) are explained hereafter.

About the fixed point support it’s documented here

15.3.2 Bool

This is the standard boolean type that correspond to a bit.

Declaration

The syntax to declare such as value is as follows:

Syntax Description Return
Bool() Create a Bool Bool
True Create a Bool assigned with true Bool
False Create a Bool assigned with false Bool
Bool(value : Boolean) Create a Bool assigned with a Scala Boolean Bool

Using this type into SpinalHDL yields:

15.3. Types 261

SpinalHDL Documentation

val myBool = Bool()

myBool := False

// := 1is the assignment operator

myBool := Bool(false) // Use a Scala Boolean to create a literal

Operators

The following operators are available for the Bool type

Operator Description Return
type
Ix Logical NOT Bool
Logical AND Bool
x&&y
x&y
Logical OR Bool
X1y
x|y
xNy Logical XOR Bool
x.set[()] Set x to True
x.clear[()] Set x to False
x.rise[()] Return True when x was low at the last cycle and is now high Bool
x.rise(initAt Same as x.rise but with a reset value Bool
Bool)
x.fall[()] Return True when x was high at the last cycle and is now low Bool
x.fall(initAt : Bool) | Same as x.fall but with a reset value Bool
x.setWhen(cond) Set x when cond is True Bool
x.clearWhen(cond) | Clear x when cond is True Bool

15.3.3 The BitVector family - (Bits, UInt, SInt)

BitVector is a family of types for storing multiple bits of information in a single value. This type has three
subtypes that can be used to model different behaviours:

Bits do not convey any sign information whereas the UInt (unsigned integer) and SInt (signed integer) provide
the required operations to compute correct results if signed / unsigned arithmetics is used.

Declaration syntax

ified by elements (see bellow table)

Syntax Description Re-

turn
Bits/Ulnt/SInt [()] Create a BitVector, bits count is inferred Bits/Ulnt/SInt
Bits/UInt/SInt(x bits) Create a BitVector with x bits Bits/UlInt/SInt
B/U/S(value : Int[,width : BitCount]) Create a BitVector assigned with ‘value’ Bits/Ulnt/SInt
B/U/S”[[size’]base]value” Create a BitVector assigned with ‘value’ Bits/Ulnt/SInt
B/U/S([x bits], element, ...) Create a BitVector assigned with the value spec- | Bits/UInt/SInt

Elements could be defined as follows:

262

Chapter 15. Developers area

SpinalHDL Documentation

Element syntax Description
x : Int -> y : Boolean/Bool Set bit x with y
x : Range -> y : Boolean/Bool Set each bits in range x with y
x:Range->y: T Set bits in range x with y
x : Range -> y : String
Set bits in range x with y
The string format follow same rules than B/U/S”xyz” one
x:Range->y: T Set bits in range x with y

default -> y : Boolean/Bool

prefix

Set all unconnected bits with the y value.

This feature could only be use to do assignments without the U/B/S

You can define a Range values

Range syntax | Description | Width
(x downto y) [xiyl x>=y | x-y+1
(xtoy) [xylx<=y | y-x+1
(x until y) [xy[x<y y-X

val myUInt = UInt(8 bits)
myUInt := U(2,8 bits)

myUInt :

U(2)

myUInt := U"0000_0101" // Base per default is binary => 5

myUInt := U"h1A"

// Base could be x (base 16)

// h (base 16)
// d (base 10)
// o (base 8)
// b (base 2)
myUInt := U"8'h1A"
myUInt := 2 // You can use scala Int as literal value
val myBool := myUInt === U(7 -> true, (6 downto 0) -> false)
val myBool := myUInt === U(myUInt.range -> true)

//For assignment purposes, you can omit
— [default -> ???] feature

myUInt := (default -> true)

myUInt := (myUInt.range -> true)
myUInt := (7 -> true,default -> false)
myUInt := ((4 downto 1) -> true,default

the B/U/S, which also alow the use of the.

//Assign myUInt with "11111111"
//Assign myUInt with "11111111"
//Assign myUInt with "10000000"
-> false) //Assign myUInt with "00011110"

15.3. Types

263

SpinalHDL Documentation

Operators

Operator Description Return

~X Bitwise NOT T(w(x) bits)

x&y Bitwise AND T(max(w(x), w(y)
bits)

x|y Bitwise OR T(max(w(x), w(y)
bits)

xNy Bitwise XOR T(max(w(x), w(y)
bits)

x(y) Readbit, y : Int/Ulnt Bool

x(hi,lo) Read bitfield, hi : Int, lo : Int T(hi-lo+1 bits)

x(offset,width) Read bitfield, offset: Ulnt, width: Int T(width bits)

x(y) =z Assign bits, y : Int/UInt Bool

x(hi,lo) :=z Assign bitfield, hi : Int, lo : Int T(hi-lo+1 bits)

x(offset,width) := z Assign bitfield, offset: Ulnt, width: Int T(width bits)

X.msb Return the most significant bit Bool

x.1sb Return the least significant bit Bool

X.range Return the range (x.high downto 0) Range

x.high Return the upper bound of the type x Int

x.XorR XOR all bits of x Bool

x.orR OR all bits of x Bool

x.andR AND all bits of x Bool

x.clearAll[()] Clear all bits T

x.setAll[()] Set all bits T

x.setAllTo(value : Boolean) Set all bits to the given Boolean value

x.setAllTo(value : Bool) Set all bits to the given Bool value

x.asBools Cast into a array of Bool Vec(Bool,width(x))

Masked comparison

Some time you need to check equality between a BitVector and a bits constant that contain hole (don’t care
values).

There is an example about how to do that :

val myBits = Bits(8 bits)
val itMatch = myBits === M"00--10--"

15.3.4 Bits

Operator Description Return

X>>y Logical shift right, y : Int T(w(x) -y bits)
X>>y Logical shift right, y : Ulnt T(w(x) bits)

X <<y Logical shift left, y : Int T(w(x) + y bits)

X <<y Logical shift left, y : Ulnt T(w(x) + max(y) bits)
x.rotateLeft(y) Logical left rotation, y : Ulnt T(w(x))

x.resize(y) Return a resized copy of x, filled with zero, y : Int T(y bits)

264 Chapter 15. Developers area

SpinalHDL Documentation

15.3.5 Ulnt, Sint

Operator Description Return

X+y Addition T(max(w(x), w(y) bits)
X-y Subtraction T(max(w(x), w(y) bits)
X *y Multiplication T(w(x) + w(y) bits)
X>y Greater than Bool

X>=y Greater than or equal Bool

X<y Less than Bool

X <=y Less than or equal Bool

X>>y Arithmetic shift right, y : Int T(w(x) - y bits)

X>>y Arithmetic shift right, y : Ulnt T(w(x) bits)

X <<y Arithmetic shift left, y : Int T(w(x) + y bits)

X <<y Arithmetic shift left, y : Ulnt T(w(x) + max(y) bits)

x.resize(y)

Return an arithmetic resized copy of x, y : Int

T(y bits)

15.3.6 Bool, Bits, Ulnt, Sint

Operator | Description Return
x.asBits Binary cast in Bits | Bits(w(x) bits)
x.asUInt Binary cast in Ulnt | Ulnt(w(x) bits)
x.asSInt Binary cast in SInt | SInt(w(x) bits)
15.3.7 Vec
Declaration Description
Vec(type : Data, size : Int) Create a vector of size time the given type
Vec(x,y,..)
Create a vector where indexes point to given elements.
this construct support mixed element width
Operator Description Return
x(y) Read element y, y : Int/Ulnt T
x(y) =z Assign element y with z, y : Int/Ulnt

val myVecOfSInt = Vec(SInt(8 bits),2)
myVecO£fSInt(0) := 2
myVecOfSInt (1) := myVecOfSInt(0) + 3

val myVecOfMixedUInt = Vec(UInt(3 bits), UInt(5 bits), UInt(8 bits))

val x,y,z = UInt(8 bits)
val myVecOf_xyz_ref = Vec(x,y,2z)
for(element <- myVecOf_xyz_ref){
element := 0 //Assign x,y,z with the value 0
}

myVecOf_xyz_ref(1l) := 3 //Assign y with the value 3

15.3. Types 265

SpinalHDL Documentation

15.3.8 Bundle
Bundles could be used to model data structure line buses and interfaces.

All attributes that extends Data (Bool, Bits, Ulnt, ...) that are defined inside the bundle are considered as part of
the bundle.

Simple example (RGB/VGA)

The following example show an RGB bundle definition with some internal function.

case class RGB(channelWidth : Int) extends Bundle{
val red = UInt(channelWidth bits)
val green = UInt(channelWidth bits)
val blue = UInt(channelWidth bits)

def isBlack : Bool = red === 0 && green === 0 && blue === 0
def isWhite : Bool = {
val max = U((channelWidth-1 downto 0) -> true)
return red === max &% green === max && blue === max
}
3

Then you can also incorporate a Bundle inside Bundle as deeply as you want:

case class VGA(channelWidth : Int) extends Bundle{
val hsync = Bool
val vsync = Bool
val color = RGB(channelWidth)

}

And finaly instanciate your Bundles inside the hardware :

val vgaIn = VGA(8) //Create a RGB instance
val vgaOut = VGA(8)
vgalut := vgaln //Assign the whole bundle

vgalut.color.green := 0 //Fix the green to zero
val vgaInRgbIsBlack = vgaln.rgb.isBlack //Get if the vgaln rgb is black

If you want to specify your bundle as an input or an output of a Component, you have to do it by the following way

class MyComponent extends Component{
val io = Bundle{
val ecmd = in(RGB(8)) //Don't forget the bracket around the bundle.
val rsp = out(RGB(8))
}
}

266 Chapter 15. Developers area

SpinalHDL Documentation

Interface example (APB)

If you want to define an interface, let’s imagine an APB interface, you can also use bundles :

class APB(addressWidth: Int,
dataWidth: Int,
selWidth : Int,
useSlaveError : Boolean) extends Bundle {

val PADDR = UInt(addressWidth bit)
val PSEL = Bits(selWidth bits)
val PENABLE = Bool

val PREADY = Bool

val PWRITE = Bool

val PWDATA = Bits(dataWidth bit)
val PRDATA = Bits(dataWidth bit)

val PSLVERROR = if(useSlaveError) Bool() else null //This wire is created only.,
—when useSlaveError is true

}

// Example of usage :

val bus = APB(addressWidth = 8,
dataWidth = 32,
selWidth = 4,
useSlaveError = false)

One good practice is to group all construction parameters inside a configuration class. This could make the
parametrization much easier later in your components, especially if you have to reuse the same configuration at
multiple places. Also if one time you need to add another construction parameter, you will only have to add it into
the configuration class and everywhere this one is instantiated:

case class APBConfig(addressWidth: Int,
dataWidth: Int,
selWidth : Int,
useSlaveError : Boolean)

class APB(val config: APBConfig) extends Bundle { //[val] config, make the.
—configuration public

val PADDR = UInt(config.addressWidth bit)
val PSEL = Bits(config.selWidth bits)
val PENABLE = Bool

val PREADY = Bool

val PWRITE = Bool

val PWDATA = Bits(config.dataWidth bit)
val PRDATA = Bits(config.dataWidth bit)

val PSLVERROR = if(config.useSlaveError) Bool() else null
}

// Example of usage

val apbConfig = APBConfig(addressWidth = 8,dataWidth = 32,selWidth = 4,useSlaveError.
= false)

val busA = APB(apbConfig)

val busB = APB(apbConfig)

Then at some points, you will probably need to use the APB bus as master or as slave interface of some components.
To do that you can define some functions :

15.3. Types 267

SpinalHDL Documentation

import spinal.core._

case class APBConfig(addressWidth: Int,
dataWidth: Int,
selWidth : Int,
useSlaveError : Boolean)

class APB(val config: APBConfig) extends Bundle {

val PADDR = UInt(config.addressWidth bit)
val PSEL = Bits(config.selWidth bits)
val PENABLE = Bool

val PREADY = Bool

val PWRITE = Bool

val PWDATA = Bits(config.dataWidth bit)
val PRDATA = Bits(config.dataWidth bit)

val PSLVERROR = if(config.useSlaveError) Bool() else null

def asMaster(): this.type = {
out (PADDR, PSEL ,PENABLE , PWRITE, PWDATA)
in(PREADY,PRDATA)
if(config.useSlaveError) in(PSLVERROR)
this

}

def asSlave(): this.type = this.asMaster().flip() //Flip reverse all in out.
—sconfiguration.

}

// Example of usage
val apbConfig = APBConfig(addressWidth = 8,dataWidth = 32,selWidth = 4,useSlaveError.
—= false)
val io = new Bundle{
val masterBus = APB(apbConfig).asMaster()
val slaveBus = APB(apbConfig).asSlave()
}

Then to make that better, the spinal.lib integrate a small master slave utile named IMasterSlave. When a bundle
extends [MasterSlave, it should implement/override the asMaster function. It give you the ability to setup a master
or a slave interface by a smoother way :

val apbConfig = APBConfig(addressWidth = 8,dataWidth = 32,selWidth = 4,useSlaveError.
= false)
val io = new Bundle{

val masterBus = master(apbConfig)

val slaveBus = slave(apbConfig)

}

There is an example of an APB bus that implement this IMasterSlave :

//You need to import spinal.lib._ to use IMasterSlave
import spinal.core._
import spinal.lib._

case class APBConfig(addressWidth: Int,
dataWidth: Int,
selWidth : Int,
useSlaveError : Boolean)

(continues on next page)

268 Chapter 15. Developers area

SpinalHDL Documentation

(continued from previous page)

class APB(val config: APBConfig) extends Bundle with IMasterSlave {

val PADDR = UInt(addressWidth bit)
val PSEL = Bits(selWidth bits)
val PENABLE = Bool

val PREADY = Bool

val PWRITE = Bool

val PWDATA = Bits(dataWidth bit)
val PRDATA = Bits(dataWidth bit)

val PSLVERROR = if(useSlaveError) Bool() else null //This wire is created only.,
—when useSlaveError is true

override def asMaster() : Unit = {
out (PADDR,PSEL , PENABLE, PWRITE, PWDATA)
in (PREADY,PRDATA)
if(useSlaveError) in(PSLVERROR)
}
//The asSlave is by default the flipped version of asMaster.
}

15.3.9 Enum

SpinalHDL support enumeration with some encodings :

En- Bit Description
cod- | width
ing
native Use the VHDL enumeration system, this is the default encoding
bina- log2Up(stas(Bitatp store states in declaration order (value from O to n-1)
rySe-
quan-
cial
bina- | state- | Use Bits to store state. Each bit correspond to one state
ry- Count
One-
Hot

Define a enumeration type:

object UartCtrlTxState extends SpinalEnum { // Or.
—»SpinalEnum(defaul tEncoding=encodingOfYouChoice)

val sIdle, sStart, sData, sParity, sStop = newElement()
}

Instantiate a enumeration signal and assign it :

val stateNext = UartCtrlTxState() // Or UartCtrlTxState(encoding=encodingOfYouChoice)
stateNext := UartCtrlTxState.sIdle

//You can also import the enumeration to have the visibility on its elements
import UartCtrlTxState._
stateNext := slIdle

15.3. Types 269

SpinalHDL Documentation

15.3.10 Data (Bool, Bits,

Uint, Sint, Enum, Bundle, Vec)

All hardware types extends the Data class, which mean that all of them provide following operators :

Operator Description Return

X===y Equality Bool

X=/=y Inequality Bool

x.getWidth Return bitcount Int

X ##y Concatenate, x->high, y->low Bits(width(x) + width(y)
bits)

Cat(x) Concatenate list, first element on Isb, x : Ar- | Bits(sumOfWidth bits)

ray[Data]
Mux(cond,x,y) ifcond? x:y T(max(w(x), w(y) bits)
x.asBits Cast in Bits Bits(width(x) bits)

x.assignFromBits(bits)

Assign from Bits

x.assignFromBits(bits,hi,lo)

Assign bitfield, hi : Int, lo : Int

T(hi-lo+1 bits)

x.assignFromBits(bits,offset,wid

thAssign bitfield, offset: Ulnt, width: Int

T(width bits)

X.getZero

Get equivalent type assigned with zero

T

15.3.11 Literals as signal declaration

Literals are generally use as a constant value. But you can also use them to do two things in a single one :

* Define a wire which is assigned with a constant value

There is an example :

val cond = in Bool

val red = in UInt(4 bits)
val valid = False //Bool wire which is by default assigned with False
val value = U"0100" //UInt wire of 4 bits which is by default assigned with 4
when(cond) {
valid := True
value := red
}
270 Chapter 15. Developers area

CHAPTER
SIXTEEN

WELCOME TO SPINALHDL'S DOCUMENTATION!

16.1 Site purpose and structure

This site presents the SpinalHDL language and how to use it on concrete examples.

If you are learning the language from scratch, this presentation is probably a good starting point.

16.2 What is SpinalHDL ?

SpinalHDL is an open source high-level hardware description language. It can be used as an alternative to VHDL
or Verilog and has several advantages over them.

Also, SpinalHDL is not an HLS approach. Its goal is not to push something abstract into flip-flops and gates, but
by using simple elements (flip-flops, gates, if / case statments) create a new abstraction level and help the designer
to reuse their code and not write the same thing over and over again.

Note: SpinalHDL is fully interoperable with standard VHDL/Verilog-based EDA tools (simulators and synthetiz-
ers) as the output generated by the toolchain could be VHDL or Verilog. It also enables mixed designs where
SpinalHDL components inter-operate with VHDL or Verilog IPs.

16.2.1 Advantages of using SpinalHDL over VHDL / Verilog

As SpinalHDL is based on a high-level language, it provides several advantages to improve your hardware coding:
1. No more endless wiring - Create and connect complex buses like AXI in one single line.
2. Evolving capabilities - Create your own bus definitions and abstraction layers.

3. Reduce code size - By a high factor, especially for wiring. This enables you to have a better overview of
your code base, increase your productivity and create fewer headaches.

4. Free and user friendly IDE - Thanks to Scala tools for auto-completion, error highlighting, navigation
shortcuts, and many others.

5. Powerful and easy type conversions - Bidirectional translation between any data type and bits. Useful when
loading a complex data structure from a CPU interface.

6. Loop detection - Tools check that there are no combinatorial loops / latches.
7. Clock domain safety - The tools inform you that there are no unintentional clock domain crossings.

8. Generic design - There are no restrictions to the genericity of your hardware description by using Scala
constructs.

271

https://cdn.jsdelivr.net/gh/SpinalHDL/SpinalDoc@master/presentation/en/presentation.pdf
https://github.com/SpinalHDL/SpinalHDL

SpinalHDL Documentation

16.2.2 License

SpinalHDL uses two licenses, one for spinal.core, and one for spinal.lib.

spinal.core (the compiler) is under the LGPL license, which could be summarized with following statements:
* You can make money with your SpinalHDL description and its generated RTL.
* You don’t have to share your SpinalHDL description and its generated RTL.
* There are no fees and no royalties.

¢ If your make improvements to the SpinalHDL core, please share your modifications to make the tool better
for everybody.

spinal.lib (a general purpose library of components/tools/interfaces) is under the permissive MIT license.

16.3 Getting started

Want to try it for yourself? Then jump to the getting started section and have fun!

16.4 Links

SpinalHDL repository:
https://github.com/SpinalHDL/SpinalHDL

A short show case (PDF):
motivation.pdf

Presentation of the language (PDF):
presentation.pdf

SBT base project:
https://github.com/Spinal HDL/Spinal TemplateSbt

Jupyter bootcamp:
https://github.com/SpinalHDL/Spinal-bootcamp

‘Workshop:
https://github.com/SpinalHDL/Spinal Workshop

VexRiscv CPU and SoC:
https://github.com/SpinalHDL/VexRiscv

StackOverflow (tag: SpinalHDL) :
StackOverflow

Google group:

272 Chapter 16. Welcome to SpinalHDL's documentation!

https://github.com/SpinalHDL/SpinalHDL
https://cdn.jsdelivr.net/gh/SpinalHDL/SpinalDoc@master/presentation/en/motivation.pdf
https://cdn.jsdelivr.net/gh/SpinalHDL/SpinalDoc@master/presentation/en/presentation.pdf
https://github.com/SpinalHDL/SpinalTemplateSbt
https://github.com/SpinalHDL/Spinal-bootcamp
https://github.com/SpinalHDL/SpinalWorkshop
https://github.com/SpinalHDL/VexRiscv
https://stackoverflow.com/

SpinalHDL Documentation

https://groups.google.com/forum/#!forum/spinalhdl-hardware-description-language

chat | on gitter

16.4. Links 273

https://groups.google.com/forum/#!forum/spinalhdl-hardware-description-language
https://gitter.im/SpinalHDL/SpinalHDL?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
https://travis-ci.org/SpinalHDL/SpinalHDL

	FAQ
	What is the overhead of SpinalHDL generated RTL compared to human written VHDL/Verilog?
	What if SpinalHDL becomes unsupported in the future?
	Does SpinalHDL keep comments in generated VHDL/verilog?
	Could SpinalHDL scale up to big projects?
	How SpinalHDL came to be
	Why develop a new language when there is VHDL/Verilog/SystemVerilog?
	How to use an unreleased version of SpinalHDL (but committed on git)?

	Support
	Communication channels
	Commercial support

	Users
	Companies
	Repositories

	Getting Started
	Getting Started
	Requirements / Things to download to get started
	How to start programming with SpinalHDL
	The SBT way
	SBT in a environnement isolated from internet

	The IDE way, with IntelliJ IDEA and its Scala plugin

	A very simple SpinalHDL example
	Generated code

	What to do next?

	Motivation
	Presentation
	Scala Guide
	Basics
	Types
	Variables
	Functions
	Return
	Return type inferation
	Curly braces
	Function that returns nothing
	Argument default values
	Apply

	Object
	Entry point (main)
	Class
	Inheritance
	Case class

	Templates / Type parameterization

	Coding conventions
	Introduction
	class vs case class
	[case] class
	companion object
	function
	instances
	if / when
	switch
	Parameters

	Interaction
	Introduction
	How SpinalHDL works behind the API
	Everything is a reference
	Hardware types
	RGB example

	Names of signals in the generated RTL
	Scala is for elaboration, SpinalHDL for hardware description
	Scala elaboration capabilities (if, for, functional programming)

	Scala guide
	Introduction

	Help for VHDL people
	VHDL comparison
	Introduction
	Process
	Implicit vs explicit definitions
	Clock domains
	Component’s internal organization
	Safety
	Functions and procedures
	Buses and Interfaces
	Signal declaration
	Component instantiation
	Casting
	Resizing
	Parameterization
	Meta hardware description

	VHDL equivalences
	Entity and architecture
	Data types
	Signal
	Assignments
	Literals
	Registers
	Process blocks

	Cheatsheets
	Core
	Lib
	Symbolic

	Data types
	Bool
	Description
	Declaration
	Operators
	Logic
	Edge detection
	Comparison
	Type cast
	Misc

	Bits
	Description
	Declaration
	Operators
	Logic
	Comparison
	Type cast
	Bit extraction
	Misc

	UInt/SInt
	Description
	Declaration
	Operators
	Logic
	Arithmetic
	Comparison
	Type cast
	Bit extraction
	Misc

	FixPoint operations
	Lower bit operations
	High bit operations
	fixTo function

	SpinalEnum
	Description
	Declaration
	Encoding
	Example

	Operators
	Comparison
	Type cast

	Bundle
	Description
	Declaration
	Operators
	Comparison
	Type cast
	Convert Bits back to Bundle

	IO Element direction
	in/out
	master/slave

	Vec
	Description
	Declaration
	Examples

	Operators
	Comparison
	Type cast
	Misc

	UFix/SFix
	Description
	Declaration
	Unsigned Fixed-Point
	Signed Fixed-Point
	Format
	Examples

	Assignments
	Valid Assignments
	Example

	From a Scala constant
	Example

	Raw value
	Example

	Operators
	Arithmetic
	Comparison
	Type cast
	Misc

	Floating
	Description
	IEEE-754 floating format
	Recoded floating format
	Zero
	Denormalized values
	Normalized values
	Infinity
	NaN

	Declaration
	IEEE-754 Number
	Recoded floating-point number

	Operators
	Type cast

	Introduction

	Structuring
	Component and hierarchy
	Introduction
	Input / output definition
	Pruned signals
	Parametrized Hardware (“Generic” in VHDL, “Parameter” in Verilog)
	Synthesized component names

	Area
	Introduction

	Function
	Introduction
	RGB to gray
	Valid Ready Payload bus

	Clock domains
	Introduction
	Instantiation
	Configuration
	Internal clock
	External clock
	Context

	Clock domain crossing
	Special clocking Areas
	Slow Area
	ResetArea
	ClockEnableArea

	Instantiate VHDL and Verilog IP
	Description
	Defining an blackbox
	Generics
	Instantiating a blackbox
	Clock and reset mapping
	io prefix
	Rename all io of a blackbox
	Add RTL source
	VHDL - No numeric type

	Preserving names
	Introduction
	Nameable base class
	Name extraction from Scala
	Area in a Component
	Area in a function
	Composite in a function
	Composite chains
	Composite in a Bundle’s function
	Unamed signal handling
	Verilog expression splitting
	Verilog long expression splitting
	When statement condition
	In last resort

	Semantic
	Assignments
	Assignments
	Width checking
	Combinatorial loops

	When/Switch/Mux
	When
	Switch
	Local declaration
	Mux
	Bitwise selection
	Example

	Rules
	Introduction
	Concurrency
	Last valid assignment wins
	Signal and register interactions with Scala (OOP reference + Functions)

	Sequential logic
	Registers
	Introduction
	Instantiation
	Reset value
	Initialization value for simulation purposes

	RAM/ROM
	Syntax
	Read-under-write policy
	Mixed-width ram
	Automatic blackboxing
	Blackboxing policy
	Standard memory blackboxes

	Design errors
	Assignment overlap
	Introduction
	Example

	Clock crossing violation
	Introduction
	Example
	crossClockDomain tag
	setSyncronousWith
	BufferCC

	Combinatorial loop
	Introduction
	Example
	False-positives

	Hierarchy violation
	Introduction
	Example

	Io bundle
	Introduction
	Example

	Latch detected
	Introduction
	Example

	No driver on
	Introduction
	Example

	NullPointerException
	Introduction
	Example
	Issue explanation

	Register defined as component input
	Introduction
	Example

	Scope violation
	Introduction
	Example

	Spinal can’t clone class
	Introduction
	Example

	Unassigned register
	Introduction
	Example
	Register with only init

	Unreachable is statement
	Introduction
	Example

	Width mismatch
	Introduction
	Assignment example
	Operator example

	Introduction

	Other language features
	Utils
	General
	Cloning hardware datatypes
	Passing a datatype as construction parameter
	The old way
	The safe way

	Frequency and time

	Assertions
	Report
	Formal
	General
	Supported features
	Limitations

	Analog and inout
	Introduction
	Analog
	inout
	InOutWrapper
	Manually driving Analog bundles

	VHDL and Verilog generation
	Generate VHDL and Verilog from a SpinalHDL Component
	Parametrization from Scala
	Parametrization from shell

	Generated VHDL and Verilog
	Organization
	Combinational logic
	Sequential logic

	VHDL and Verilog attributes

	Introduction
	Introduction

	Libraries
	Utils
	State less utilities
	State full utilities
	Counter
	Timeout
	ResetCtrl
	asyncAssertSyncDeassert

	Special utilities

	Stream
	Specification
	Semantics
	Functions
	Utils
	StreamFifo
	StreamFifoCC
	StreamCCByToggle
	StreamArbiter
	StreamJoin
	StreamFork
	StreamDispatcherSequencial

	Flow
	Specification
	Functions

	Fragment
	Specification
	Functions

	State machine
	Introduction
	StateMachine
	States
	StateDelay
	StateFsm
	StateParallelFsm

	VexRiscv (RV32IM CPU)
	Bus Slave Factory
	Introduction
	Functionality

	Fiber framework
	Simple dummy example
	Handle[T]
	soon(handle)

	Bus
	AHB-Lite3
	Configuration and instanciation
	Variations

	Apb3
	Introduction
	Configuration and instanciation
	Functions and operators

	Axi4
	Introduction
	Configuration and instanciation
	Variations
	Functions and operators

	AvalonMM
	Introduction
	Configuration and instanciation

	Com
	UART
	Introduction
	Bus definition
	UartCtrl

	IO
	ReadableOpenDrain
	ReadableOpenDrain

	TriState
	Introduction
	TriState
	TriStateArray

	Graphics
	Colors
	RGB

	VGA
	VGA bus
	VGA timings
	VGA controller

	EDA
	QSysify
	Introduction
	Example
	tags
	AvalonMM / APB3
	Interrupt input
	Reset output

	Adding new interface support

	QuartusFlow
	Introduction
	For a single rtl file
	Example
	Tip

	For an existing project
	Example

	Misc
	Plic Mapper
	PlicMapper.apply
	PlicMapping.sifive
	PlicMapping.light

	Introduction
	Introduction

	Simulation
	Setup and installation
	Scala
	Linux
	Windows
	From the MinGW package manager
	From source

	Boot a simulation
	Introduction
	Configuration
	Running multiple tests on the same hardware
	Throw Success or Failure of the simulation from a thread

	Accessing signals of the simulation
	Read and write signals
	Accessing signals inside the component’s hierarchy

	Clock domains
	Stimulus API
	Wait API
	Callback API
	Default ClockDomain
	New ClockDomain

	Thread-full API
	Fork and join simulation threads
	Sleep and waitUntil

	Thread-less API
	Sensitive API
	Simulation engine
	Examples
	Asynchronous adder
	Dual clock fifo
	Single clock fifo
	Synchronous adder
	Uart decoder
	Uart encoder

	Introduction
	How does SpinalHDL simulate the hardware?
	Performance

	Examples
	Simple ones
	APB3 definition
	Introduction
	Specification
	Implementation
	Usage

	Carry adder
	Color summing
	Counter with clear
	Introduction
	PLL BlackBox and reset controller
	The PLL BlackBox definition
	TopLevel definition

	RGB to gray
	Sinus rom

	Intermediates ones
	Fractal calculator
	Introduction
	Specification
	Elaboration parameters (Generics)
	Bundle definition
	Component implementation

	UART
	Specification
	Data structures
	Controller construction parameters
	UART bus
	UART configuration enums
	UartCtrl configuration Bundles

	Implementation
	UartCtrlTx
	UartCtrlRx
	UartCtrl

	Simple usage
	Example with test bench
	Bonus: Having fun with Stream

	VGA
	Introduction
	Data structures
	RGB color
	VGA bus
	VGA timings

	VGA Controller
	Specification
	Component and io definition
	Horizontal and vertical logic
	Interconnections
	Bonus

	Advanced ones
	JTAG TAP
	Introduction
	JTAG bus
	JTAG state machine
	JTAG TAP
	Jtag instructions
	JTAG TAP class interface
	Base class
	Read instruction
	Write instruction
	Idcode instruction

	User friendly wrapper
	Usage demonstration

	Memory mapped UART
	Introduction
	Specification
	Implementation

	Pinesec
	Timer
	Introduction
	Timer
	Specification
	Implementation

	Bridging function
	Specification
	Implementation
	Usage

	Introduction

	Legacy
	RiscV
	Features
	Base FPGA project
	How to generate the CPU VHDL
	How to debug
	Todo

	pinsec
	Hardware
	Introduction
	RISCV
	AXI4
	APB3
	Generate the RTL

	SoC toplevel (Pinsec)
	Introduction
	Defining all IO
	Clock and resets
	Reset controller
	Systems clock domains

	Main components
	RISCV CPU
	On chip RAM
	SDRAM controller
	JTAG controller

	Peripherals
	GPIO
	Timer
	UART controller
	VGA controller

	Bus interconnects
	AXI4 to APB3 bridge
	AXI4 crossbar
	APB3 decoder

	Misc

	Introduction
	Introduction
	Board support

	Software
	RISCV tool-chain
	OpenOCD/GDB/Eclipse configuration

	Developers area
	Bus Slave Factory Implementation
	Introduction
	Specification
	Implementation
	BusSlaveFactory
	BusSlaveFactoryDelayed
	AvalonMMSlaveFactory

	Conclusion

	How to HACK this documentation
	Title convention
	Wavedrom integration
	New section
	example

	Types
	Introduction
	Bool
	Declaration
	Operators

	The BitVector family - (Bits, UInt, SInt)
	Declaration syntax
	Operators
	Masked comparison

	Bits
	UInt, SInt
	Bool, Bits, UInt, SInt
	Vec
	Bundle
	Simple example (RGB/VGA)
	Interface example (APB)

	Enum
	Data (Bool, Bits, UInt, SInt, Enum, Bundle, Vec)
	Literals as signal declaration

	Welcome to SpinalHDL’s documentation!
	Site purpose and structure
	What is SpinalHDL ?
	Advantages of using SpinalHDL over VHDL / Verilog
	License

	Getting started
	Links

