Clock domains
Introduction
In SpinalHDL, clock and reset signals can be combined to create a clock domain. Clock domains could be applied to some area of the design and then all synchronous elements instantiated into this area will then implicitly use this clock domain.
Clock domain application work like a stack, which mean, if you are in a given clock domain, you can still apply another clock domain locally.
Instantiation
The syntax to define a clock domain is as follows (using EBNF syntax):
ClockDomain(
clock: Bool
[,reset: Bool]
[,softReset: Bool]
[,clockEnable: Bool]
[,frequency: IClockDomainFrequency]
[,config: ClockDomainConfig]
)
This definition takes five parameters:
Argument |
Description |
Default |
---|---|---|
|
Clock signal that defines the domain |
|
|
Reset signal. If a register which need a reset and his clock domain didn’t provide one, an error message happen |
null |
|
Reset which infer an additional synchronous reset |
null |
|
The goal of this signal is to disable the clock on the whole clock domain without having to manually implement that on each synchronous element |
null |
|
Allow to specify the frequency of the given clock domain and later get it in your desing |
UnknownFrequency |
|
Specify polarity of signals and the nature of the reset |
Current config |
An applied example to define a specific clock domain within the design is as follows:
val coreClock = Bool
val coreReset = Bool
// Define a new clock domain
val coreClockDomain = ClockDomain(coreClock,coreReset)
// Use this domain in an area of the design
val coreArea = new ClockingArea(coreClockDomain){
val coreClockedRegister = Reg(UInt(4 bit))
}
Configuration
In addition to the constructor parameters given here, the following elements of each clock domain are configurable via a ClockDomainConfig
class :
Property |
Valid values |
---|---|
|
|
|
|
|
|
|
|
|
|
class CustomClockExample extends Component {
val io = new Bundle {
val clk = in Bool
val resetn = in Bool
val result = out UInt (4 bits)
}
// configure the clock domain
val myClockDomain = ClockDomain(
clock = io.clk,
reset = io.resetn,
config = ClockDomainConfig(
clockEdge = RISING,
resetKind = ASYNC,
resetActiveLevel = LOW
)
)
// Define an Area which use myClockDomain
val myArea = new ClockingArea(myClockDomain) {
val myReg = Reg(UInt(4 bits)) init(7)
myReg := myReg + 1
io.result := myReg
}
}
By default, a ClockDomain is applied to the whole design. The configuration of this one is :
Clock : rising edge
Reset : asynchronous, active high
No clock enable
Internal clock
An alternative syntax to create a clock domain is the following :
ClockDomain.internal(
name: String,
[config: ClockDomainConfig,]
[withReset: Boolean,]
[withSoftReset: Boolean,]
[withClockEnable: Boolean,]
[frequency: IClockDomainFrequency]
)
This definition takes six parameters:
Argument |
Description |
Default |
---|---|---|
|
Name of clk and reset signal |
|
|
Specify polarity of signals and the nature of the reset |
Current config |
|
Add a reset signal |
true |
|
Add a soft reset signal |
false |
|
Add a clock enable |
false |
|
Frequency of the clock domain |
UnknownFrequency |
It’s advantage is to create clock and reset signals with a specified name inplace of an inherited one. Then you have to assign those ClockDomain’s signals as for instance in the example bellow :
class InternalClockWithPllExample extends Component {
val io = new Bundle {
val clk100M = in Bool
val aReset = in Bool
val result = out UInt (4 bits)
}
// myClockDomain.clock will be named myClockName_clk
// myClockDomain.reset will be named myClockName_reset
val myClockDomain = ClockDomain.internal("myClockName")
// Instanciate a PLL (probably a BlackBox)
val pll = new Pll()
pll.io.clkIn := io.clk100M
// Assign myClockDomain signals with something
myClockDomain.clock := pll.io.clockOut
myClockDomain.reset := io.aReset || !pll.io.
// Do whatever you want with myClockDomain
val myArea = new ClockingArea(myClockDomain){
val myReg = Reg(UInt(4 bits)) init(7)
myReg := myReg + 1
io.result := myReg
}
}
External clock
You can define everywhere a clock domain which is driven by the outside. It will then automatically add clock and reset wire from the top level inputs to all synchronous elements.
ClockDomain.external(
name: String,
[config: ClockDomainConfig,]
[withReset: Boolean,]
[withSoftReset: Boolean,]
[withClockEnable: Boolean,]
[frequency: IClockDomainFrequency]
)
Arguments of the ClockDomain.external
function are exactly the sames than for the ClockDomain.internal
one. Below an example of a desing using ClockDomain.external
.
class ExternalClockExample extends Component {
val io = new Bundle {
val result = out UInt (4 bits)
}
// On top level you have two signals :
// myClockName_clk and myClockName_reset
val myClockDomain = ClockDomain.external("myClockName")
val myArea = new ClockingArea(myClockDomain){
val myReg = Reg(UInt(4 bits)) init(7)
myReg := myReg + 1
io.result := myReg
}
}
Context
At any moment you can retrieve in which clock domain you are by calling ClockDomain.current
.
Then the returned instance (which is a ClockDomain one) as following functions that you can call :
name |
Description |
Return |
---|---|---|
frequency.getValue |
Return the frequency of the clock domain |
Double |
hasReset |
Return if the clock domain has a reset signal |
Boolean |
hasSoftReset |
Return if the clock domain has a reset signal |
Boolean |
hasClockEnable |
Return if the clock domain has a clock enable signal |
Boolean |
readClockWire |
Return a signal derived by the clock signal |
Bool |
readResetWire |
Return a signal derived by the reset signal |
Bool |
readSoftResetWire |
Return a signal derived by the reset signal |
Bool |
readClockEnableWire |
Return a signal derived by the clock enable signal |
Bool |
isResetActive |
Return True when the reset has effect |
Bool |
isSoftResetActive |
Return True when the softReset has effect |
Bool |
isClockEnableActive |
Return True when the clock enable has effect |
Bool |
There is an example with an UART controller that use the frequency specification to set its clock divider :
val coreClockDomain = ClockDomain(coreClock, coreReset, frequency=FixedFrequency(100e6))
val coreArea = new ClockingArea(coreClockDomain){
val ctrl = new UartCtrl()
ctrl.io.config.clockDivider := (coreClk.frequency.getValue / 57.6e3 / 8).toInt
}
Clock domain crossing
SpinalHDL checks at compile time that there is no unwanted/unspecified cross clock domain signal reads. If you want to read a signal that is emitted by another ClockDomain
area, you should add the crossClockDomain
tag to the destination signal as depicted in the following example:
// _____ _____ _____
// | | (crossClockDomain) | | | |
// dataIn -->| |--------------------->| |---------->| |--> dataOut
// | FF | | FF | | FF |
// clkA -->| | clkB -->| | clkB -->| |
// rstA -->|_____| rstB -->|_____| rstB -->|_____|
// Implementation where clock and reset pins are given by components IO
class CrossingExample extends Component {
val io = new Bundle {
val clkA = in Bool
val rstA = in Bool
val clkB = in Bool
val rstB = in Bool
val dataIn = in Bool
val dataOut = out Bool
}
// sample dataIn with clkA
val area_clkA = new ClockingArea(ClockDomain(io.clkA,io.rstA)){
val reg = RegNext(io.dataIn) init(False)
}
// 2 register stages to avoid metastability issues
val area_clkB = new ClockingArea(ClockDomain(io.clkB,io.rstB)){
val buf0 = RegNext(area_clkA.reg) init(False) addTag(crossClockDomain)
val buf1 = RegNext(buf0) init(False)
}
io.dataOut := area_clkB.buf1
}
//Alternative implementation where clock domains are given as parameters
class CrossingExample(clkA : ClockDomain,clkB : ClockDomain) extends Component {
val io = new Bundle {
val dataIn = in Bool
val dataOut = out Bool
}
// sample dataIn with clkA
val area_clkA = new ClockingArea(clkA){
val reg = RegNext(io.dataIn) init(False)
}
// 2 register stages to avoid metastability issues
val area_clkB = new ClockingArea(clkB){
val buf0 = RegNext(area_clkA.reg) init(False) addTag(crossClockDomain)
val buf1 = RegNext(buf0) init(False)
}
io.dataOut := area_clkB.buf1
}
Even shorter by importing the lib import spinal.lib._
SpinalHDL offers a cross clock domain buffer BufferCC(input: T, init: T = null, bufferDepth: Int = 2)
to avoid metastability issues.
class CrossingExample(clkA : ClockDomain,clkB : ClockDomain) extends Component {
val io = new Bundle {
val dataIn = in Bool
val dataOut = out Bool
}
// sample dataIn with clkA
val area_clkA = new ClockingArea(clkA){
val reg = RegNext(io.dataIn) init(False)
}
// BufferCC to avoid metastability issues
val area_clkB = new ClockingArea(clkB){
val buf1 = BufferCC(area_clkA.reg, False)
}
io.dataOut := area_clkB.buf1
}
Special clocking Area
Slow Area
SlowArea
is used to create a new clock domain area which is slower than the current one.
class TopLevel extends Component {
// Use the current clock domain : 100MHz
val areaStd = new Area {
val counter = out(CounterFreeRun(16).value)
}
// Slow the current clockDomain by 4 : 25 MHz
val areaDiv4 = new SlowArea(4){
val counter = out(CounterFreeRun(16).value)
}
// Slow the current clockDomainn to 50MHz
val area50Mhz = new SlowArea(50 MHz){
val counter = out(CounterFreeRun(16).value)
}
}
def main(args: Array[String]) {
new SpinalConfig(
defaultClockDomainFrequency = FixedFrequency(100 MHz)
).generateVhdl(new TopLevel)
}
ResetArea
ResetArea
is used to create a new clock domain area where a special reset is combined or not with the current clock domain reset.
class TopLevel extends Component {
val specialReset = Bool
// The reset of this area is done with the specialReset signal
val areaRst_1 = new ResetArea(specialReset, false){
val counter = out(CounterFreeRun(16).value)
}
// The reset of this area is a combination between the current reset and the specialReset
val areaRst_2 = new ResetArea(specialReset, true){
val counter = out(CounterFreeRun(16).value)
}
}
ClockEnableArea
ClockEnableArea
is used to add one more clock enable in the current clock domain.
class TopLevel extends Component {
val clockEnable = Bool
// Add a clock enable for this area
val area_1 = new ClockEnableArea(clockEnable){
val counter = out(CounterFreeRun(16).value)
}
}