Clock domains
Introduction
In SpinalHDL, clock and reset signals can be combined to create a clock domain. Clock domains can be applied to some areas of the design and then all synchronous elements instantiated into those areas will then implicitly use this clock domain.
Clock domain application works like a stack, which means that if you are in a given clock domain you can still apply another clock domain locally.
Please note that a register captures its clock domain when the register is created, not when it is assigned. So please make sure to create them inside the desired ClockingArea
.
Instantiation
The syntax to define a clock domain is as follows (using EBNF syntax):
ClockDomain(
clock: Bool
[,reset: Bool]
[,softReset: Bool]
[,clockEnable: Bool]
[,frequency: IClockDomainFrequency]
[,config: ClockDomainConfig]
)
This definition takes five parameters:
Argument |
Description |
Default |
---|---|---|
|
Clock signal that defines the domain |
|
|
Reset signal. If a register exists which needs a reset and the clock domain doesn’t provide one, an error message will be displayed |
null |
|
Reset which infers an additional synchronous reset |
null |
|
The goal of this signal is to disable the clock on the whole clock domain without having to manually implement that on each synchronous element |
null |
|
Allows you to specify the frequency of the given clock domain and later read it in your design |
UnknownFrequency |
|
Specify the polarity of signals and the nature of the reset |
Current config |
An applied example to define a specific clock domain within the design is as follows:
val coreClock = Bool()
val coreReset = Bool()
// Define a new clock domain
val coreClockDomain = ClockDomain(coreClock, coreReset)
// Use this domain in an area of the design
val coreArea = new ClockingArea(coreClockDomain) {
val coreClockedRegister = Reg(UInt(4 bits))
}
When an Area is not needed, it is also possible to apply the clock domain directly. Two syntaxes exist:
class Counters extends Component {
val io = new Bundle {
val enable = in Bool ()
val freeCount, gatedCount, gatedCount2 = out UInt (4 bits)
}
val freeCounter = CounterFreeRun(16)
io.freeCount := freeCounter.value
val gatedClk = ClockDomain.current.readClockWire && io.enable
val gated = ClockDomain(gatedClk, ClockDomain.current.readResetWire)
// Here the "gated" clock domain is applied on "gatedCounter" and "gatedCounter2"
val gatedCounter = gated(CounterFreeRun(16))
io.gatedCount := gatedCounter.value
val gatedCounter2 = gated on CounterFreeRun(16)
io.gatedCount2 := gatedCounter2.value
assert(gatedCounter.value === gatedCounter2.value, "gated count mismatch")
}
Configuration
In addition to constructor parameters, the following elements of each clock domain are configurable via a ClockDomainConfig
class:
Property |
Valid values |
---|---|
|
|
|
|
|
|
|
|
|
|
class CustomClockExample extends Component {
val io = new Bundle {
val clk = in Bool()
val resetn = in Bool()
val result = out UInt (4 bits)
}
// Configure the clock domain
val myClockDomain = ClockDomain(
clock = io.clk,
reset = io.resetn,
config = ClockDomainConfig(
clockEdge = RISING,
resetKind = ASYNC,
resetActiveLevel = LOW
)
)
// Define an Area which use myClockDomain
val myArea = new ClockingArea(myClockDomain) {
val myReg = Reg(UInt(4 bits)) init(7)
myReg := myReg + 1
io.result := myReg
}
}
By default, a ClockDomain
is applied to the whole design. The configuration of this default domain is:
Clock : rising edge
Reset : asynchronous, active high
No clock enable
This corresponds to the following ClockDomainConfig
:
val defaultCC = ClockDomainConfig(
clockEdge = RISING,
resetKind = ASYNC,
resetActiveLevel = HIGH
)
Internal clock
An alternative syntax to create a clock domain is the following:
ClockDomain.internal(
name: String,
[config: ClockDomainConfig,]
[withReset: Boolean,]
[withSoftReset: Boolean,]
[withClockEnable: Boolean,]
[frequency: IClockDomainFrequency]
)
This definition takes six parameters:
Argument |
Description |
Default |
---|---|---|
|
Name of clk and reset signal |
|
|
Specify polarity of signals and the nature of the reset |
Current config |
|
Add a reset signal |
true |
|
Add a soft reset signal |
false |
|
Add a clock enable |
false |
|
Frequency of the clock domain |
UnknownFrequency |
The advantage of this approach is to create clock and reset signals with a known/specified name instead of an inherited one.
Once created, you have to assign the ClockDomain
’s signals, as shown in the example below:
class InternalClockWithPllExample extends Component {
val io = new Bundle {
val clk100M = in Bool()
val aReset = in Bool()
val result = out UInt (4 bits)
}
// myClockDomain.clock will be named myClockName_clk
// myClockDomain.reset will be named myClockName_reset
val myClockDomain = ClockDomain.internal("myClockName")
// Instantiate a PLL (probably a BlackBox)
val pll = new Pll()
pll.io.clkIn := io.clk100M
// Assign myClockDomain signals with something
myClockDomain.clock := pll.io.clockOut
myClockDomain.reset := io.aReset || !pll.io.
// Do whatever you want with myClockDomain
val myArea = new ClockingArea(myClockDomain) {
val myReg = Reg(UInt(4 bits)) init(7)
myReg := myReg + 1
io.result := myReg
}
}
External clock
You can define a clock domain which is driven by the outside anywhere in your source. It will then automatically add clock and reset wires from the top level inputs to all synchronous elements.
ClockDomain.external(
name: String,
[config: ClockDomainConfig,]
[withReset: Boolean,]
[withSoftReset: Boolean,]
[withClockEnable: Boolean,]
[frequency: IClockDomainFrequency]
)
The arguments to the ClockDomain.external
function are exactly the same as in the ClockDomain.internal
function. Below is an example of a design using ClockDomain.external
:
class ExternalClockExample extends Component {
val io = new Bundle {
val result = out UInt (4 bits)
}
// On the top level you have two signals :
// myClockName_clk and myClockName_reset
val myClockDomain = ClockDomain.external("myClockName")
val myArea = new ClockingArea(myClockDomain) {
val myReg = Reg(UInt(4 bits)) init(7)
myReg := myReg + 1
io.result := myReg
}
}
Signal priorities in HDL generation
In the current version, reset and clock enable signals have different priorities. Their order is : asyncReset
, clockEnable
, syncReset
and softReset
.
Please be careful that clockEnable has a higher priority than syncReset. If you do a sync reset when the clockEnable is disabled (especially at the beginning of a simulation), the gated registers will not be reseted.
Here is an example:
val clockedArea = new ClockEnableArea(clockEnable) {
val reg = RegNext(io.input) init False
}
It will generate VerilogHDL codes like:
always @(posedge clk) begin
if(clockedArea_newClockEnable) begin
if(!resetn) begin
clockedArea_reg <= 1'b0;
end else begin
clockedArea_reg <= io_input;
end
end
end
If that behaviour is problematic, one workaround is to use a when statement as a clock enable instead of using the ClockDomain.enable feature. This is open for future improvements.
Context
You can retrieve in which clock domain you are by calling ClockDomain.current
anywhere.
The returned ClockDomain
instance has the following functions that can be called:
name |
Description |
Return |
---|---|---|
frequency.getValue |
Return the frequency of the clock domain |
Double |
hasReset |
Return if the clock domain has a reset signal |
Boolean |
hasSoftReset |
Return if the clock domain has a soft reset signal |
Boolean |
hasClockEnable |
Return if the clock domain has a clock enable signal |
Boolean |
readClockWire |
Return a signal derived from the clock signal |
Bool |
readResetWire |
Return a signal derived from the soft reset signal |
Bool |
readSoftResetWire |
Return a signal derived from the reset signal |
Bool |
readClockEnableWire |
Return a signal derived from the clock enable signal |
Bool |
isResetActive |
Return True when the reset is active |
Bool |
isSoftResetActive |
Return True when the soft reset is active |
Bool |
isClockEnableActive |
Return True when the clock enable is active |
Bool |
An example is included below where a UART controller uses the frequency specification to set its clock divider:
val coreClockDomain = ClockDomain(coreClock, coreReset, frequency=FixedFrequency(100e6))
val coreArea = new ClockingArea(coreClockDomain) {
val ctrl = new UartCtrl()
ctrl.io.config.clockDivider := (coreClk.frequency.getValue / 57.6e3 / 8).toInt
}
Clock domain crossing
SpinalHDL checks at compile time that there are no unwanted/unspecified cross clock domain signal reads. If you want to read a signal that is emitted by another ClockDomain
area, you should add the crossClockDomain
tag to the destination signal as depicted in the following example:
// _____ _____ _____
// | | (crossClockDomain) | | | |
// dataIn -->| |--------------------->| |---------->| |--> dataOut
// | FF | | FF | | FF |
// clkA -->| | clkB -->| | clkB -->| |
// rstA -->|_____| rstB -->|_____| rstB -->|_____|
// Implementation where clock and reset pins are given by components' IO
class CrossingExample extends Component {
val io = new Bundle {
val clkA = in Bool()
val rstA = in Bool()
val clkB = in Bool()
val rstB = in Bool()
val dataIn = in Bool()
val dataOut = out Bool()
}
// sample dataIn with clkA
val area_clkA = new ClockingArea(ClockDomain(io.clkA,io.rstA)) {
val reg = RegNext(io.dataIn) init(False)
}
// 2 register stages to avoid metastability issues
val area_clkB = new ClockingArea(ClockDomain(io.clkB,io.rstB)) {
val buf0 = RegNext(area_clkA.reg) init(False) addTag(crossClockDomain)
val buf1 = RegNext(buf0) init(False)
}
io.dataOut := area_clkB.buf1
}
// Alternative implementation where clock domains are given as parameters
class CrossingExample(clkA : ClockDomain,clkB : ClockDomain) extends Component {
val io = new Bundle {
val dataIn = in Bool()
val dataOut = out Bool()
}
// sample dataIn with clkA
val area_clkA = new ClockingArea(clkA) {
val reg = RegNext(io.dataIn) init(False)
}
// 2 register stages to avoid metastability issues
val area_clkB = new ClockingArea(clkB) {
val buf0 = RegNext(area_clkA.reg) init(False) addTag(crossClockDomain)
val buf1 = RegNext(buf0) init(False)
}
io.dataOut := area_clkB.buf1
}
In general, you can use 2 or more flip-flop driven by the destination clock domain to prevent metastability. The BufferCC(input: T, init: T = null, bufferDepth: Int = 2)
function provided in spinal.lib._
will instantiate the necessary flip-flops (the number of flip-flops will depends on the bufferDepth
parameter) to mitigate the phenomena.
class CrossingExample(clkA : ClockDomain,clkB : ClockDomain) extends Component {
val io = new Bundle {
val dataIn = in Bool()
val dataOut = out Bool()
}
// sample dataIn with clkA
val area_clkA = new ClockingArea(clkA) {
val reg = RegNext(io.dataIn) init(False)
}
// BufferCC to avoid metastability issues
val area_clkB = new ClockingArea(clkB) {
val buf1 = BufferCC(area_clkA.reg, False)
}
io.dataOut := area_clkB.buf1
}
Warning
The BufferCC
function is only for signals of type Bit
, or Bits
operating as Gray-coded counters (only 1 bit-flip per clock cycle), and can not used for multi-bit cross-domain processes. For multi-bit cases, it is recommended to use StreamFifoCC
for high bandwidth requirements, or use StreamCCByToggle
to reduce resource usage in cases where bandwidth is not critical.
Special clocking Areas
Slow Area
A SlowArea
is used to create a new clock domain area which is slower than the current one:
class TopLevel extends Component {
// Use the current clock domain : 100MHz
val areaStd = new Area {
val counter = out(CounterFreeRun(16).value)
}
// Slow the current clockDomain by 4 : 25 MHz
val areaDiv4 = new SlowArea(4) {
val counter = out(CounterFreeRun(16).value)
}
// Slow the current clockDomain to 50MHz
val area50Mhz = new SlowArea(50 MHz) {
val counter = out(CounterFreeRun(16).value)
}
}
def main(args: Array[String]) {
new SpinalConfig(
defaultClockDomainFrequency = FixedFrequency(100 MHz)
).generateVhdl(new TopLevel)
}
BootReset
clockDomain.withBootReset() could specify register’s resetkinde as boot. clockDomain.withSyncReset() could specify register’s resetkinde as Sync-reset.
class Top extends Component {
val io = new Bundle {
val data = in Bits(8 bit)
val a, b, c, d = out Bits(8 bit)
}
io.a := RegNext(io.data) init 0
io.b := clockDomain.withBootReset() on RegNext(io.data) init 0
io.c := clockDomain.withSyncReset() on RegNext(io.data) init 0
io.d := clockDomain.withAsyncReset() on RegNext(io.data) init 0
}
SpinalVerilog(new Top)
ResetArea
A ResetArea
is used to create a new clock domain area where a special reset signal is combined with the current clock domain reset:
class TopLevel extends Component {
val specialReset = Bool()
// The reset of this area is done with the specialReset signal
val areaRst_1 = new ResetArea(specialReset, false) {
val counter = out(CounterFreeRun(16).value)
}
// The reset of this area is a combination between the current reset and the specialReset
val areaRst_2 = new ResetArea(specialReset, true) {
val counter = out(CounterFreeRun(16).value)
}
}
ClockEnableArea
A ClockEnableArea
is used to add an additional clock enable in the current clock domain:
class TopLevel extends Component {
val clockEnable = Bool()
// Add a clock enable for this area
val area_1 = new ClockEnableArea(clockEnable) {
val counter = out(CounterFreeRun(16).value)
}
}