JTAG TAP
Introduction
Important
The goal of this page is to show the implementation of a JTAG TAP (a slave) by a non-conventional way.
Important
Important
This page will not explain how JTAG works. A good tutorial can be found there.
One big difference between commonly used HDL and Spinal, is the fact that SpinalHDL allow you to define hardware generators/builders. It’s very different than describing hardware. Let’s take a look into the example bellow because the difference between generate/build/describing could seem “playing with word” or could be interpreted differently.
The example bellow is a JTAG TAP which allow the JTAG master to read switchs
/keys
inputs and write leds
outputs. This TAP could also be recognized by a master by using the UID 0x87654321.
class SimpleJtagTap extends Component {
val io = new Bundle {
val jtag = slave(Jtag())
val switchs = in Bits(8 bits)
val keys = in Bits(4 bits)
val leds = out Bits(8 bits)
}
val tap = new JtagTap(io.jtag, 8)
val idcodeArea = tap.idcode(B"x87654321") (instructionId=4)
val switchsArea = tap.read(io.switchs) (instructionId=5)
val keysArea = tap.read(io.keys) (instructionId=6)
val ledsArea = tap.write(io.leds) (instructionId=7)
}
As you can see, a JtagTap is created but then some Generator/Builder functions (idcode,read,write) are called to create each JTAG instruction. This is what i call “Hardware generator/builder”, then these Generator/Builder are used by the user to describing an hardware. And there is the point, in commonly HDL you can only describe your hardware, which imply many donkey job.
This JTAG TAP tutorial is based on this implementation.
JTAG bus
First we need to define a JTAG bus bundle.
case class Jtag() extends Bundle with IMasterSlave {
val tms = Bool()
val tdi = Bool()
val tdo = Bool()
override def asMaster() : Unit = {
out(tdi, tms)
in(tdo)
}
}
As you can see this bus don’t contain the TCK pin because it will be provided by the clock domain.
JTAG state machine
Let’s define the JTAG state machine as explained here
object JtagState extends SpinalEnum {
val RESET, IDLE,
IR_SELECT, IR_CAPTURE, IR_SHIFT, IR_EXIT1, IR_PAUSE, IR_EXIT2, IR_UPDATE,
DR_SELECT, DR_CAPTURE, DR_SHIFT, DR_EXIT1, DR_PAUSE, DR_EXIT2, DR_UPDATE = newElement()
}
class JtagFsm(jtag: Jtag) extends Area {
import JtagState._
val stateNext = JtagState()
val state = RegNext(stateNext) randBoot()
stateNext := state.mux(
default -> (jtag.tms ? RESET | IDLE), //RESET
IDLE -> (jtag.tms ? DR_SELECT | IDLE),
IR_SELECT -> (jtag.tms ? RESET | IR_CAPTURE),
IR_CAPTURE -> (jtag.tms ? IR_EXIT1 | IR_SHIFT),
IR_SHIFT -> (jtag.tms ? IR_EXIT1 | IR_SHIFT),
IR_EXIT1 -> (jtag.tms ? IR_UPDATE | IR_PAUSE),
IR_PAUSE -> (jtag.tms ? IR_EXIT2 | IR_PAUSE),
IR_EXIT2 -> (jtag.tms ? IR_UPDATE | IR_SHIFT),
IR_UPDATE -> (jtag.tms ? DR_SELECT | IDLE),
DR_SELECT -> (jtag.tms ? IR_SELECT | DR_CAPTURE),
DR_CAPTURE -> (jtag.tms ? DR_EXIT1 | DR_SHIFT),
DR_SHIFT -> (jtag.tms ? DR_EXIT1 | DR_SHIFT),
DR_EXIT1 -> (jtag.tms ? DR_UPDATE | DR_PAUSE),
DR_PAUSE -> (jtag.tms ? DR_EXIT2 | DR_PAUSE),
DR_EXIT2 -> (jtag.tms ? DR_UPDATE | DR_SHIFT),
DR_UPDATE -> (jtag.tms ? DR_SELECT | IDLE)
)
}
Note
The randBoot()
on state
make it initialized with a random state. It’s only for simulation purpose.
JTAG TAP
Let’s implement the core of the JTAG TAP, without any instruction, just the base manage the instruction register (IR) and the bypass.
class JtagTap(val jtag: Jtag, instructionWidth: Int) extends Area with JtagTapAccess {
val fsm = new JtagFsm(jtag)
val instruction = Reg(Bits(instructionWidth bits))
val instructionShift = Reg(Bits(instructionWidth bits))
val bypass = Reg(Bool())
jtag.tdo := bypass
switch(fsm.state) {
is(JtagState.IR_CAPTURE) {
instructionShift := instruction
}
is(JtagState.IR_SHIFT) {
instructionShift := (jtag.tdi ## instructionShift) >> 1
jtag.tdo := instructionShift.lsb
}
is(JtagState.IR_UPDATE) {
instruction := instructionShift
}
is(JtagState.DR_SHIFT) {
bypass := jtag.tdi
}
}
}
Note
Ignore the reference to with JTagTapAccess for now, it will be explained further down.
Jtag instructions
Now that the JTAG TAP core is done, we can think about how to implement JTAG instructions by an reusable way.
JTAG TAP class interface
First we need to define how an instruction could interact with the JTAG TAP core. We could of course directly take the JtagTap area, but it’s not very nice because is some situation the JTAG TAP core is provided by another IP (Altera virtual JTAG for example).
So let’s define a simple and abstract interface between the JTAG TAP core and instructions :
trait JtagTapAccess {
def getTdi: Bool
def getTms: Bool
def setTdo(value: Bool): Unit
def getState: JtagState.C
def getInstruction(): Bits
def setInstruction(value: Bits) : Unit
}
Then let the JtagTap
implement this abstract interface:
class JtagTap(val jtag: Jtag, ...) extends Area with JtagTapAccess{
...
override def getTdi: Bool = jtag.tdi
override def setTdo(value: Bool): Unit = jtag.tdo := value
override def getTms: Bool = jtag.tms
override def getState: JtagState.C = fsm.state
override def getInstruction(): Bits = instruction
override def setInstruction(value: Bits): Unit = instruction := value
}
Base class
Let’s define a useful base class for JTAG instruction that provide some callback (doCapture/doShift/doUpdate/doReset) depending the selected instruction and the state of the JTAG TAP :
class JtagInstruction(tap: JtagTapAccess,val instructionId: Bits) extends Area {
def doCapture(): Unit = {}
def doShift(): Unit = {}
def doUpdate(): Unit = {}
def doReset(): Unit = {}
val instructionHit = tap.getInstruction === instructionId
Component.current.addPrePopTask(() => {
when(instructionHit) {
when(tap.getState === JtagState.DR_CAPTURE) {
doCapture()
}
when(tap.getState === JtagState.DR_SHIFT) {
doShift()
}
when(tap.getState === JtagState.DR_UPDATE) {
doUpdate()
}
}
when(tap.getState === JtagState.RESET) {
doReset()
}
})
}
Note
Read instruction
Let’s implement an instruction that allow the JTAG to read a signal.
class JtagInstructionRead[T <: Data](data: T)(tap: JtagTapAccess, instructionId: Bits) extends JtagInstruction(tap, instructionId) {
val shifter = Reg(Bits(data.getBitsWidth bits))
override def doCapture(): Unit = {
shifter := data.asBits
}
override def doShift(): Unit = {
shifter := (tap.getTdi ## shifter) >> 1
tap.setTdo(shifter.lsb)
}
}
Write instruction
Let’s implement an instruction that allow the JTAG to write a register (and also read its current value).
class JtagInstructionWrite[T <: Data](data: T, cleanUpdate: Boolean, readable: Boolean)(tap: JtagTapAccess, instructionId: Bits) extends JtagInstruction(tap, instructionId) {
val shifter, store = Reg(Bits(data.getBitsWidth bit))
override def doCapture(): Unit = {
shifter := store
}
override def doShift(): Unit = {
shifter := (tap.getTdi ## shifter) >> 1
tap.setTdo(shifter.lsb)
}
override def doUpdate(): Unit = {
store := shifter
}
data.assignFromBits(store)
}
Idcode instruction
Let’s implement the instruction that return a idcode to the JTAG and also, when a reset occur, set the instruction register (IR) to it own instructionId.
class JtagInstructionIdcode[T <: Data](value: Bits)(tap: JtagTapAccess, instructionId: Bits) extends JtagInstruction(tap, instructionId) {
val shifter = Reg(Bits(32 bit))
override def doShift(): Unit = {
shifter := (tap.getTdi ## shifter) >> 1
tap.setTdo(shifter.lsb)
}
override def doReset(): Unit = {
shifter := value
tap.setInstruction(instructionId)
}
}
User friendly wrapper
Let’s add some user friendly function to the JtagTapAccess to make instructions instantiation easier .
trait JtagTapAccess {
...
def idcode(value: Bits)(instructionId: Bits) =
new JtagInstructionIdcode(value)(this, instructionId)
def read[T <: Data](data: T)(instructionId: Bits) =
new JtagInstructionRead(data)(this, instructionId)
def write[T <: Data](data: T, cleanUpdate: Boolean = true, readable: Boolean = true)(instructionId: Bits) =
new JtagInstructionWrite[T](data, cleanUpdate, readable)(this, instructionId)
}
Usage demonstration
And there we are, we can now very easily create an application specific JTAG TAP without having to write any logic or any interconnections.
class SimpleJtagTap extends Component {
val io = new Bundle {
val jtag = slave(Jtag())
val switchs = in Bits(8 bits)
val keys = in Bits(4 bits)
val leds = out Bits(8 bits)
}
val tap = new JtagTap(io.jtag, 8)
val idcodeArea = tap.idcode(B"x87654321") (instructionId=4)
val switchsArea = tap.read(io.switchs) (instructionId=5)
val keysArea = tap.read(io.keys) (instructionId=6)
val ledsArea = tap.write(io.leds) (instructionId=7)
}
// end SimpleJtagTap
This way of doing things (Generating hardware) could also be applied to, for example, generating an APB/AHB/AXI bus slave.